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ABSTRACT

Understanding clinical heterogeneity in neurodegeneration is
paramount for personalized/precision medicine. A founda-
tional approach to identify clinically heterogeneous subtypes
within neurodegenerative conditions is to perform cluster anal-
ysis of neuroimaging data that capture atrophy patterns due to
neurodegeneration. However, raw anatomical features, in their
own right, provide an incomplete understanding of neurode-
generation because they do not include two key factors that
statistically characterize neurodegeneration: graph-theoretic
information and aging. Thus, standard clustering approaches
do not necessarily guarantee clinically heterogeneous clusters.
Under this motivation, we seek to enrich the raw anatomic
features with graph-theoretic information and aging with a
principled coVariance neural network (VNN)-driven approach.
In this paper, we leverage VNN model as a supervised autoen-
coder that achieves principled integration of the information
inherent within brain morphometric features, the anatomical
covariance matrix, and aging to provide enriched anatomic
features, which are referred to as VNN-informed features. Our
experiments revealed that VNN-informed features consistently
provided a more statistically significant stratification of vari-
ous neurodegenerative conditions in terms of clinical markers
of disease severity than was possible through raw brain mor-
phometric features or other commonly adopted alternatives in
the literature.

Index Terms— One, two, three, four, five

1. INTRODUCTION

Neurodegeneration is the progressive loss of structure or func-
tion of neurons and can be encoded within a combination of
various data modalities, including neuroimaging [ 1]}, biological
markers [2], and clinical readings [3l{4]. Importantly, neurode-
generation is a statistically complex phenomenon, as it is a
characteristic of the healthy aging process and various neuro-
logical disorders [5}/6] with well-documented heterogeneity
in factors, such as disease onset, disease severity, anatomic
signatures, and disease progression. There has been an in-
creased focus on adopting data-driven approaches to stratify
various neurodegenerative conditions, such as Alzheimer’s
disease [7|8], Parkinson’s disease [9L/10]], progressive supranu-
clear palsy [[11], and frontotemporal dementia [|12]], with a
broader goal of developing targeted disease-modifying thera-
pies [13H15].

The most prevalent approach to stratify neurodegenera-
tive conditions involves unsupervised clustering of relevant
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Fig. 1. Clustering AD according to brain atrophy identifies
clusters significantly distinct in terms of brain atrophy, but not
disease burden (in terms of CDRSB) or age distribution.

data modalities from patient cohorts (such as neuroimaging,
biological measurements, demographic information) [[16H18]],
with neuroimaging being the most commonly used data modal-
ity [[18]. In this paper, we limit our focus to the stratification of
neurodegenerative conditions using brain morphometric fea-
tures. Brain morphometric features (such as cortical thickness,
area, volume) are extracted from structural MRI, which is by
far the most commonly adopted neuroimaging modality in
clinical workflows. Stratifying neurodegenerative conditions
is well-motivated for various reasons relevant to precision
medicine, including varying rates of progression of the disease
across different subgroups (for instance, due to certain genetic
risk factors in Alzheimer’s disease [[19]]) and tailored or adap-
tive interventions for specific disease subgroups [20] being the
prominent ones. To clarify this aspect further, we refer the
reader to Table 1 in the review article in [[7]]. Therein, the clin-
ical relevance of identified clusters from neuroimaging data
is substantiated by their characterization in terms of factors
such as cognitive decline, executive function decline, memory
decline, genetic profiles, language deficits, and polygenic risk
scores. Clearly, distinct clinical and neurobiological charac-
terizations of data-driven subtypes via post-hoc analyses are
essential for the successful translation of disease stratifications
to precision medicine [[21,[22].

However, clustering of neuroimaging features does not
guarantee clinical heterogeneity between identified clusters.
Figure|l|provides compelling evidence in this regard. In this
experiment, we leveraged hierarchical clustering of the cortical
thickness features of a population of 118 individuals diagnosed
with Alzheimer’s disease (AD) from the well-known ADNI
study [23]]. Reduction in cortical thickness, or cortical thin-
ning, is a metric of brain atrophy, with neurodegenerative
conditions like AD exhibiting accelerated brain atrophy as the
disease progresses. Although the two identified clusters were
significantly distinct in terms of brain atrophy (Fig. 1a), they
were not separated in terms of disease burden as measured by
the clinical dementia rating-sum of boxes (CDRSB) scores.



CDRSB is a prevalent metric of disease burden used in clinical
settings [24]]. Similar observations have been reported before,
for example in [25]], where no significant differences in various
clinical metrics were reported at the baseline across different
subgroups identified using clustering of neuroimaging data of
a similar cohort. We contend that clustering cortical thickness
features directly is a suboptimal processing of the information
inherent within because of two reasons: (i) the graph-theoretic
information inherent within neuroimaging data [26] is not
leveraged, and (ii) brain atrophy manifests in both healthy
aging and neurodegeneration, but the differences between their
evolution for a person of specific age to exhibit certain level of
atrophy are not taken into consideration. In this context, our
aim in this paper can be articulated as follows.

Aim: to propose a principled strategy for efficient pro-
cessing of information inherent within brain morphometric
features, such that, clustering approaches achieve better clini-
cal stratification of neurodegeneration.

It is worth noting that the study in [25] extended their
experiments to longitudinal analysis of clinical metrics, where
one cluster exhibited markedly faster cognitive decline over
time. However, to the best of our knowledge, the relationship
between principled information processing of neuroimaging
features and clinical stratification of neurodegeneration has
not been explored systematically before. This relationship
is crucial for the stratification of neurodegeneration in cross-
sectional datasets.

The key contribution of this paper lies in providing a prin-
cipled approach of leveraging reconstructed anatomic features
derived from coVariance neural network (VNN)-driven (super-
vised) autoencoder to achieve better clinical stratification than
that possible by standard anatomic features extracted from
structural MRI. VNNs have recently been studied as graph
neural networks (GNN5s) operating on the sample covariance
matrix graph, to advance the theoretical and empirical princi-
ples of statistical inference [27H32].

2. A VNN-DRIVEN APPROACH TO TRANSFORMING
ANATOMIC FEATURES

Preliminaries. The anatomic features are derived from struc-
tural MRI, with each element representing a statistic (such
as cortical thickness) associated with a distinct brain region.
Moreover, the anatomical covariance matrix provides the
graph representation of the inter-relationships between differ-
ent anatomic features across the whole brain [|33[]. Anatomic
features and anatomic covariance matrix hold significant
relevance in computational neuroscience, where recent works
on morphometric similarity networks have generalized the
concept of anatomical covariance to include multiple modal-
ities of information inherent within structural MRI [34] and
demonstrated their relevance to identifying biomarkers [35]].
To set up the VNN-driven approach technically, consider a
dataset consisting of n individuals, whose anatomic features
are represented by m-dimensional vectors, such that, the vector
of anatomic features for individual i is given by x; € R™*1,
The anatomic covariance matrix for this dataset is estimated as

n
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where x is the sample mean of anatomic features across
the dataset. Similar to GNNs that leverage linear-shift-

and-sum operators over matrix representation of a graph
as graph filters [36-38]], the convolution operation in a
VNN is modeled by a coVariance filter, given by H(C) £
Zszo hiC* | suchthat, outputz = H(C)x for input
x € R™*!. The scalar parameters {hy}5_ are the filter
taps that are learned from the data. Note that the application
of coVariance filter preserves the shape of x at the output z.
coVariance filters and PCA. The foundational works on
VNNSs have leveraged the eigendecomposition of the covari-
ance matrix C to establish that coVariance filter is fundamen-
tally similar to the well-known principal component analysis
(PCA)-transform [27,30]. Specifically, given the eigendecom-
position C = VAV, where V is the matrix of eigenvectors
of C and A is a diagnonal matrix of eigenvalues {\;}™,
ordered as Ay > Ao --- > A, it can be readily checked that

K
VTz=h(A)V'x where h(A) =Y hpAF
k=0

Thus, the learnable function h(A) determines the contri-
bution of specific eigenvectors within V' to the reconstruction
z. This observation provides the foundation to further develop
a coVariance filter as an autoencoder that can strategically
generate representations amenable to the task at hand.

coVariance filters as supervised autoencoders. While
PCA is most prominently associated with dimensionality re-
duction in unsupervised learning, it can also be interpreted as
a linear autoencoder that achieves reconstruction of the input
by leveraging the principal subspace of the dataset at hand
(see Chapter 14 in [39] for specific analytical arguments). The
coVariance filter provides a supervised learning setup in this
context, where the function i (A) denotes a learned transfor-
mation of the principal subspace of the covariance matrix to
generate z.

Theorem 2.1. Consider a labeled dataset {x;,y;}"_,. The
coVariance filter H(C) can be set up as a supervised autoen-
coder when its filter taps {hk}fzo are fine-tuned to form an
estimate 7); of label y; from input x; as follows:

m
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where z; = H(C)x; ,

and z; provides the reconstruction from x; fine-tuned to the
learning objective of predicting y;.

As per Theorem [2.1] the output z; is the reconstruction of
the input x;, such that, z; = Vh(A)V x;, where h(A) deter-
mines how the principal components were exploited to achieve
the reconstruction. In this paper, we focus on datasets with
scalar labels {y;} and hence, Theorem is specialized to
this setting. Extension of Theorem [2.1]to non-scalar labels is
straightforward. A coVariance filter holds a significant advan-
tage over PCA in terms of stability to stochastic perturbations
in the covariance matrix [27]], which is necessary to ensure that
the reconstruction z; is not prone to small perturbations to the
dataset (for instance, due to removal or addition of samples).

VNN-informed anatomic features coVariance filters are
linear models with a limited learning capacity. A perceptron
of a VNN, which is capable of learning non-linear patterns,
is formed by concatenating the coVariance filter with a point-
wise non-linear activation function o (-) (e.g., ReLU, tanh) that
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Fig. 2. Workflow for generating VNN-informed anatomic fea-
tures from cortical thickness features and identifying clinical
heterogeneity within a neurodegenerative condition.

satisfies o(u) = [o(u1),...,0(um)] foru = [ug,..., Uy
Thus, the output of a single-layer VNN for an input x is z =
o(H(C)x). Similar to other deep learning architectures, the
capacity of VNN can be improved by adding more layers and
channels for information processing [27]]. We use the notation
®(x; C,H) to compactly represent the output at the final layer
of the VNN for the given input x. The notation H denotes the
set of all learnable parameters (filter taps) within the VNN.
Pertinent to the application at hand, the VNN model can
be designed to generate the output ®(x; C, H) with a similar
dimensionality as the input x. The learnable parameters 7 are
fine-tuned to form an estimate ¢ of a label y, such that,

.1
y=—
m
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Thus, given input anatomic features x, the VNN model
provides the output ®(x; C, H), which is the anatomic repre-
sentation generated by VNN as it can be projected on to the
brain surface in a fashion similar to the input x. Based on
our discussion on coVariance filters leading up to their setup
as supervised autoencoders in Theorem [2.1] and the fact that
coVariance filters form the elementary information processing
module within a VNN, we argue that the VNN model forms
the output ®(x; C, ) from input x, at least in part, by ex-
ploiting the principal components of the covariance matrix C.
However, unlike the case of the coVariance filter in this con-
text, this argument may not be readily provable for a generic
VNN model. Hence, we articulate our argument that VNN can
be interpreted as a supervised autoencoder in the following
proposition.

Proposition 2.2. Consider a labeled dataset {x;,y;}"_,. The
VNN model can be set up as a supervised autoencoder when
its learnable parameters H are fine-tuned to form an estimate
y; of label y; from input x; as follows:

m
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and ®(x;; C,H) provides the reconstruction from x; fine-
tuned to the learning objective of predicting y;.

As per Proposition the output ®(x;; C, H) is the re-
construction of the input x;, achieved at least in part by H-
mediated exploitation of the principal components. We refer
to the output ®(x;; C, ) as the VNN-informed feature gen-
erated from anatomic feature x;. Based on the motivation
described in ‘Using age as the label” below, we set the label y;
to be chronological age.

Using age as the label. In this paper, we select ‘chrono-
logical age’ as the label to train a VNN. Age is one of the
most relevant biological variables in statistical analyses of neu-
rodegeneration with neuroimaging because of two key reasons:
(i) age is a leading risk factor for various neurodegenerative
conditions [40]]; and (ii) brain anatomic features evolve with
healthy aging and exhibit accelerated or anomalous behaviors
for various neurodegenerative conditions relative to the healthy
population [41].

3. STRATIFYING NEURODEGENERATION WITH
VNN-INFORMED FEATURES

The VNN-driven approach to transforming anatomic features
in Section 2 provides a principled way to combine the infor-
mation inherent within the raw anatomic features, anatomic
covariance matrix, and age. In this section, we describe the
experiment setup to stratify a neurodegenerative cohort using
VNN-informed features.

Pre-training a VNN model on healthy cohort. We used
the healthy control population from the OASIS-3 dataset [42]
to pre-train the VNN model. The cortical thickness data con-
sists of m = 68 features across the cortex, curated according
to the Desikan-Killiany brain atlas [43[]. The VNN comprised
2 layers of width 61, totaling 22, 570 learnable parameters.
The unweighted mean of the output at the final layer formed
the age estimate. We hypothesized the statistical properties of
VNN-informed features derived from this pre-VNN to be dif-
ferent and more informative than their raw cortical thickness
counterparts, due to the inherent convolution over the anatomic
covariance matrix and the aging context infused during the
VNN pre-training.

Stratifying neurodegenerative conditions with VNN-
informed features derived from the pre-trained VNN. For a
given cohort with neurodegenerative conditions, we clustered
the VNN-informed features (after mean normalization) using
hierarchical clustering [44]] and non-negative matrix factor-
ization (NMF) [45]. These two clustering algorithms have
been previously adopted in the literature [46-51]. The pri-
mary goal of this set of experiments was to determine whether
clustering VNN-informed features led to more clinically het-
erogeneous clusters relative to raw cortical thickness features
or other commonly used baselines in the disease subtyping
literature. Thus, the metric of interest was determined in terms
of the group level differences (ANCOVA with age as covari-
ate) between the distributions of CDRSB or NP3TOT scores
(see Section[.T)) for identified clusters in the disease cohorts.
We prescribed the number of clusters to be 2 for all cluster-
ing experiments. The rationale behind this choice is that the
datasets leveraged are moderate in size, and the choice of 2
clusters provides the maximal statistical power and a more
convincing picture to gauge clinical heterogeneity within the
sub-populations than that feasible in scenarios with more than
2 groups (due to possibility of extremely small subgroups, for
example).

Since the weights of the pre-trained VNN model were not
altered, it was oblivious to the identity of the neurodegener-
ative condition being stratified. For hierarchical clustering,
dendrograms were constructed for VNN-informed features
derived for neurodegenerative conditions based on the nearest-
neighbor chain method and Euclidean distance (see ??).



Condition (clinical marker) F'-value (p-value) for ANCOVA with Age as covariate
Raw CT [CT, Age] [Residualized CT|VNN-informed features
AD (CDRSB) 0.46 (0.498) [0.16 (0.68)| 0.65 (0.42) 4.46 (0.038)
bvFTD (CDRSB) 6.81 (0.0012) |1.47(0.23)| 7.4(0.009) 6.13 (0.016)
svPPA (CDRSB) 0.88 (0.355) [0.65(0.42)| 0.88(0.355) 4.75 (0.037)
PNFA (CDRSB) - 0.009 (0.92) - 14.01 (9.1 x10~4)
PD (NP3TOT) 10.78 (1.1 x1072)4.48 (0.028)| 0.096 (0.757) 14.08 (2 x10™%)

Table 1. Results for clusters derived using hierarchical clustering.

4. RESULTS

4.1. Datasets and clinical markers of disease severity

We studied five neurodegenerative conditions: Alzheimer’s
disease (AD), Parkinson’s disease (PD), Behavioral Frontotem-
poral Degeneration (bvFTD), Semantic Variant Primary Pro-
gressive Aphasia (svPPA), and Progressive Non-fluent Aphasia
(PNFA). All datasets are described in Appendix ??. For all
conditions, we considered cortical thickness features that had
been derived from T1-weighted MRI images acquired on 3.0
Tesla MRI scanners. The common theme across all considered
neurodegenerative conditions studied is that (i) they are char-
acterized by cortical atrophy and (ii) age is a prominent risk
factor or determinant of disease onset and severity [52H55]].
We seek to compare VNN-informed features against vari-
ous baselines that involve clustering of raw cortical thickness
features accompanied with age information. To carry out these
comparisons, we consider the following prominent clinical
markers of disease severity.
CDRSB. We considered Clinical Dementia Rating Sum-of-
boxes (CDRSB) as the metric of disease severity in AD,
bvFTD, svPPA, and PNFA subgroups.
NP3TOT score. The MDS-Unified Parkinson’s Disease Rat-
ing Scale (MDS-UPDRS) is a comprehensive assessment de-
signed to monitor the burden and extent of PD [56]. Part 3 of
MDS-UPDRS is focused on the motor examination, and clini-
cians employ this score in daily clinical practice to objectively
track motor performance and progression over time [57]. Here,
we use the notation NP3TOT to refer to the score associated
with Part 3 of MDS-UPDRS.

4.2. Stratification of Neurodegenerative Conditions

We obtained the two clusters from VNN-informed anatom-
ical features using hierarchical and NMF-based clustering
algorithms for all neurodegenerative conditions studied. The
anatomic characterizations of these clusters as determined by
VNN-informed features will be discussed subsequently. First,
we focus on the comparisons against different baselines in
terms of clinical stratifications achieved.

Anatomical baselines. We first considered three anatomic
features-driven baselines that have been widely adopted in the
existing studies on subtyping neurodegeneration [[7,|58-H60]:

- Raw CT: Raw cortical thickness features;

- [CT, Age]: Raw cortical thickness features concatenated
with age; and

- Residualized CT: Age-corrected raw cortical thickness
features. For every cortical region, this correction was
performed by a linear regression model that had been

trained on the respective healthy cohort (HC) to predict
chronological age from the associated cortical thickness
data. This pre-trained linear regression model was then
applied on the data with the neurodegenerative cohort,
and the residual of the model formed the residualized
CT statistic as the baseline.

Our objective was to compare the clinical stratification of
identified clusters using all approaches. Age was used as a
covariate variable to avoid reporting of trivial clustering ac-
cording to the age of the patient population. Table [I]tabulates
the results derived using agglomerative hierarchical clustering
with Euclidean distance metric. The approaches that yielded
the largest clinical heterogeneity have been emphasized.

The results in Table |1| convey that the clusters identified
using VNN-informed features were the most clinically strat-
ified in the AD, svPPA, PNFA, and PD disease cohorts. The
entries corresponding to Raw CT and Residualized CT for the
PNFA cohort in Table[I]are missing as hierarchical clustering
could not identify a second cluster of significant size (larger
than 10% of the total cohort size).

Interestingly, none of the three baselines could identify
clusters in the AD, svPPA, and PNFA cohorts with significantly
different CDRSB score. However, the clusters identified using
VNN-informed features in the AD cohort differed significantly
in terms of CDRSB scores (ANCOVA with age as covariate,
p-value < 0.05). Moreover, for bvFTD, the clusters identified
using VNN-informed features significantly differed in terms
of CDRSB score, but were outperformed by clusters derived
using Raw CT and Residualized CT baselines.

4.3. Additional Experiments
5. DISCUSSION

We have presented an innovative VNN-driven pipeline that
achieves a principled amalgamation of anatomic features, age
information, and covariance to yield VNN-informed anatomic
features. The key contributions of this paper are both con-
ceptual and empirical. We considered 5 neurodegenerative
conditions: 4 within the family of Alzheimer’s disease and
related dementias, plus Parkinson’s disease. VNN-informed
features consistently achieved more statistically significant
stratification in terms of markers of disease burden (cognitive
impairment and motor impairment) relative to raw cortical
thickness features, or, age-corrected cortical thickness features.
The strength of the results lies in the consistency of findings
across 4 out of 5 different populations.

PCA-driven baselines. We also considered two PCA-
driven baselines as PCA approach holds the most relevance
with respect to VNNs. These approaches reduced the dimen-



sionality of the neuroimaging datasets from neurodegenerative
cohorts according to different sets of principal components.

- PCA Approach 1: In this approach, we leveraged the
principal components of the anatomic covariance matrix
estimated from the healthy cohorts.

- PCA Approach 2: In this approach, we leveraged the
principal components of the anatomic covariance matrix
estimated from the neurodegenerative disease cohorts.

We clarify that we did not have a pre-defined hypothesis
to select the number of principal components for these ap-
proaches. Hence, we investigated the performances for these
approaches (in terms of F-values for ANCOVA over clinical
scores across 2 clusters identified via hierarchical clustering in
the disease groups) averaged over the clusters identified based
on the reduced datasets according to the first K number of
principal components (K varying from 1 to 15) derived from
the features of respective disease populations. Both baselines
achieved less significant clinical stratification in the two clus-
ters (see Appendix ?? for specific results). These results also
highlighted the value of using age as the label for VNN-driven
approach.

Here, we also highlight that the performances achieved
by both PCA-driven approaches were not robust to the choice
of principal components used. As an example, the clusters
identified from PCA Approach 1 with the first 9 or 11 princi-
pal components exhibited much smaller clinical heterogeneity
(F-values 0.795 and 1.70) relative to the clusters identified
using PCA-reduced features from the first 10 principal com-
ponents (F-value = 8.92). This observation attests to the well-
recognized lack of reproducibility of PCA-driven statistical
approaches, which is overcome within the seminal works on
VNNSs (Sihag et al, 2022).

Anatomic characterization. Next, we report the anatomic
characterizations of the clusters identified using VNN-
informed features for all neurodegenerative conditions. In
the main paper, we focus only on the clusters identified us-
ing hierarchical clustering. For conciseness, we report the
anatomic characterizations of two clusters on the same brain
surface by performing element-wise group difference analyses
of VNN-informed features derived from cluster 1 and cluster
2, for all neurodegenerative conditions.

Figure [3]illustrates the anatomic patterns associated with
the results of group-level difference analysis from ANOVA
between cluster 1 and cluster 2 (identified using hierarchical
clustering), for different neurodegenerative conditions. Each
sub-figure in Fig. [3] has been obtained by projecting the F-
value of ANOVA for element-wise group level comparison
of VNN-informed features of cluster 1 and cluster 2. More-
over, in Fig. [3| green color on the brain surface represents
the directionality of the mean associated element in VNN-
informed features across cluster 1 being larger than that across
cluster 2, and red color encodes the opposite. We uniformly
associated ‘Cluster 2” with the subgroup with higher disease
burden as determined after clustering of VNN-informed fea-
tures. In this context, the brain regions marked with red color
in Fig. [3|indeed correlated with the regions known to be rele-
vant for the respective diseases (see additional discussions in
Appendix 2?).

Explaining anatomic characterization with principal
components. We further explored whether there were differ-
ences in how the pre-trained VNN model processed the raw

cortical thickness features for the identified clusters as per the
inner product metrics in Section 2. To this end, we evaluated
and reported the inner product of normalized VNN-informed
features (norm = 1) and the eigenvectors of the respective
anatomical covariance matrix. For the AD cohort, the re-
sults in Fig. ?? depict the inner product metrics between the
VNN-informed features and the first 20 eigenvectors of the
respective anatomic covariance matrix. Notably, certain eigen-
vectors were more strongly linked to VNN-informed features
than others. Interestingly, the O-th, first, and 18-th eigenvec-
tors exhibited significantly different (ANOVA, p-value after
Bonferroni correction < 0.05) inner product metrics for the
clusters in AD identified using hierarchical clustering. Similar
observations for other disease cohorts have been reported in
Appendix ??. The results in this context corroborated that the
pre-trained VNN model indeed leveraged the principal compo-
nents of the covariance difference differently to yield distinct
clusters.

6. DISCUSSION

We have presented an innovative VNN-driven pipeline that
achieves a principled amalgamation of anatomic features, age
information, and covariance to yield VNN-informed anatomic
features. The key contributions of this paper are both concep-
tual and empirical and have been highlighted below.

Enhanced clinical stratification of neurodegenerative
conditions. We considered 5 neurodegenerative conditions: 4
within the family of Alzheimer’s disease and related dementias,
plus Parkinson’s disease. VNN-informed features consistently
achieved more statistically significant stratification in terms of
markers of disease burden (cognitive impairment and motor
impairment) relative to raw cortical thickness features, or,
age-corrected cortical thickness features. The strength of the
results lies in the consistency of findings across 5 different
populations.

Transparent construction of VNN-informed features.
Building upon the interpretation of the VNN as an autoencoder
(Theorem and Proposition [2.2)), our experiments have re-
vealed that the identified clusters from VNN-informed features
could be tied to differences in how the principal components of
the covariance matrix were leveraged by the VNN to construct
the associated VNN-informed features. Such transparency is
critical for applications in healthcare, as it provides a potential
mechanism for the intended end-users (clinicians and patients)
to trust the findings yielded by the VNN model.

Broadly, the contributions in this paper lie at the intersec-
tion of machine learning, computational neuroscience, and
precision medicine. The innovative methods proposed in this
paper could potentially open up new perspectives to leveraging
anatomic features in clinical workflows and analysis of het-
erogeneity within neurodegenerative conditions in precision
medicine.

Limitations. The impact of our results is limited by the
size of the different datasets considered. This concern is partly
mitigated by the fact that all datasets considered are publicly
available and hence, the findings are repeatable by independent
researchers without significant hurdles. Nevertheless, our ex-
periments may not have captured the true heterogeneity within
the neurodegenerative conditions due to limited data size and
consideration of only two clusters.

Our study is methodology-focused and hence, provides
limited impact for clinical audiences. Specifically, we modeled
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all experiments within the narrow regime defined by cortical
thickness features and two specific measures of disease burden.
Although our methodology is innovative and our experiments
comprehensive, the reported results may hold little relevance
for clinical use. Hence, a more comprehensive study with a
broader set of anatomic features, neurobiological factors, and
clinical markers must be conducted to identify the true clinical
impact.

The method of constructing VNN-informed features is
restricted to the *Age’ factor. In general, age may not have
a uniform impact across all pathologies, which potentially
explains why raw cortical thickness features achieved com-
parable clinical stratification in bvFTD (Table 1). Hence, the
neuropathology of diseases must be taken into account in a
comprehensive clinical study in the future. Moreover, other
factors, such as sex, could be considered for construction of
VNN-informed features.

We have not compared our results against other deep learn-
ing based autoencoders, which could potentially provide simi-
lar functionality. Hence, we cannot claim that VNNs achieve
the best clinical stratification possible within the considered
setting. However, it’s notable that the findings reported by the
VNN-driven method are backed by sound statistical analysis
and technical arguments towards explainability or transparency.
Such functionality is not universal across deep learning-based
autoencoders. This paper potentially opens up a new applica-
tion domain, where the effectiveness of other deep learning
approaches could be compared in future studies.
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