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Covariance Matrix

» Covariance matrix captures the redundancies between data points (features)
- Brain datasets: some areas of the brain activate together
- Financial datasets: stock prices fluctuate in tandem

- Traffic datasets: traffic volume is correlated across intersections

ooooooooo
Beverly Hills

Finance Traffic
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Covariance Matrix

> Evaluating a covariance matrix
. . ™m
. Consider a random variable x € R

- The covariance is

C =E[(x — p)(x — p)"], where p = E[x]

- In practice, we have sample covariance matrix (an estimate)

. 1 1 —
C = i — ) (x; — ), wh L = — U
>_(xi— )(xi — )7, where =~} x

1=1 1=1
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Covariance Matrix

> Covariance matrix encodes redundancies between different features in data

Covariance matrix Low redundancy High redundancy
(2-feature dataset) (smaller g (11,17)) (higher o (11, 17))

J2(7"1) o (1r,12)

Feature ry Feature ry

o (11,713) o° (12)

Feature 1, Feature 1,

o (1q,1,) = how features ry and r;, vary with respect to each other
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Covariance matrices are widespread in signal processing and machine learning

> Principal component analysis (PCA)

- Eigenvectors of the covariance matrix form principal components (PCs)
- PCs inform the shape of a dataset (directions of variance)

A

Given sample x and eigendecomposition C = VAVT,

PCA transform: x =V 'x

RN PCA transform in ML

Principalcomponent2 £ . . . .
o Unsupervised learning (dim. reduction)
W0 T : : :
. @ Principalcomponent1 o Sypervised learning (regression,
.qg,,,i-_.p . : o (o .
classification)
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Covariance matrices are widespread in signal processing and machine learning

> Covariance matrices are leveraged as graphical representations of data
- AgraphG = (V,E, W)
o Setofnodesl/ o A weightfunction W

o SetofedgesE X = [T1,...,T6

- Covariance matrix is a fully connected graph,

o nhodes are the features

o edges associated with pairwise covariance values
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Covariance matrices are widespread in signal processing and machine learning

> Covariance matrices as graphical representations; used in graph neural nets
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Learning with covariance matrices: Challenges

> Sample covariance matrix is estimate from finite data

ML

model
> ML model is trained on training dataset, I

deployed on test dataset

Input data —— — Qutput

Covariance matrix

» Statistical spaces defined by training and C= n—1 > (ki = )(xi — 1)’

test data may not align perfectly Representation of

training dataset

Representation of
test dataset
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Learning with covariance matrices: Challenges

> Sample covariance matrix is estimate from finite data

Sihag, Mateos, Isufi, Ribeiro

Input data —— S - Output
model
> ML modelis trained on training dataset, I
deployed on test dataset _ ,
Covariance matrix
. 1 <«
> Statistical spaces defined by training and C=——7D (i-m)ixi—p)
. 1=1
test data may not align perfectly Representation of /<<
Challenge 1 (stability) training dataset

Are inference outcomes stable to

perturbations in covariance matrix Representation of
(finite sample effect)? test dataset

S\ N\
TS S SO0
— —““‘
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Learning with covariance matrices: Challenges

> Datasets capture information about same phenomenon at different scales

Dataset with m4 features Dataset with m, features

M) P T ST

Covariance matrix C,,, Covariance matrix G,
(size my X m1) (size ma X m2)
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Learning with covariance matrices: Challenges

> Datasets capture information about same phenomenon at different scales

Dataset with m, features

M1 e T o PSR

Covariance matrix C,,, Covariance matrix Cp,
(SiZG my1 X ml) (SIZe mo X mg)
ML ML
Input data Input data 0
— — : : N — Output
(m,-dimensional) mc&del Output (m,-dimensional) m&iel P
mi

Challenge 2 (transferability)
Can the redundancy in covariance matrices of datasets of different sizes be exploited?
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Learning with covariance matrices: A GSP approach

> Signal and information processing is about exploiting signal structure

> Graph signal processing (GSP): broaden classical signal processing to graphs
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ABSTRACT | Research in graph signal processing (GSP) aims
to develop tools for processing data defined on irregular graph

Graphs offer the ability to model such data and complex

‘domains. In this paper, we first provid of coreideas in

inerctions g them. For example, users on Twitter can be
o N - "

GsP and their connection to conventional digital signal processing,
along with a brief historical perspective to highlight how concepts.
recently developed in GSP build on top of prior resean:h in other
areas. We

in P

asedges “This paper and
modeling hoseas signalsonagraph forexample.yea of gradua-

inaweather: tc. D d cl: |

tools, including methods for sampling, filtering, or graph learning.
Next, we review progress in several application areas using GSP.
lysis of sensor biological

signal processing concepts and tools such as Fourier transform,
fering,an fequency response t dita residing on grphs. I

data, and

KEYWORDS | Graph signal processing (GSP); network science
and graphs; sampling; signal processing

I. INTRODUCTION AND MOTIVATION

Data is all around us, and massive amounts of it. Almost
every aspect of human life is now being recorded at all lev-
els: from the marking and recording of processing inside the
cells starting with the advent of fluorescent markers, to our
personal data through health monitoring devices and apps,
financial and banking data, our social networks, mobility
and traffic patterns, marketing preferences, fads, and many
‘more. The complesity of such networks [1] and i

ling na princi-
pled way. The ﬁcldthalgat}\cr: all these questions under a com-
mon umbrella s graph signal processing (GSP) 2}, [3].

While the precise definition of a graph signal will be
given later in the paper, let us assume for now that a graph
signal is a et of values residing on a set of nodes. These nodes
are connected via (possibly weighted) edges. As in classical

al processing, such signals can stem from a variety of
domains; unlike in classical signal processing, however, the
underlying graphs can tell a fair amount about those signals
through their structure. Different types of graphs model dif-
ferent types of networks that these nodes represent.

‘Typical graphs that are used to represent common real-
world data include Erdds-Reényi graphs, ring graphs, random

means that the data now reside on irregular and complex
structures that do not lend themselves to standard tools.

eometric graphs, small-world graphs, power-law graphs,
‘graphs, scale-free graphs, an
These model networks with random connections (Erdfs-
Rényi graphs), networks of brain neurons (small-world
‘graphs), social networks (scale-free graphs), and others.
As in classical signal processing, graph signals can have

Graph Signal Processing

History, development, impact, and outlook

ignal processing (SP) excels at analyzing, processing, and

inferring information defined over regular (first continu-

ous, later discrete) domains such as time or space. Indeed,
the last 75 years have shown how SP has made an impact in
areas such as communications, acoustics, sensing, image
processing, and control, to name a few. With the digitaliza-
tion of the modern world and the increasing pervasiveness of
data-collection mechanism
applications oftentimes arises in non-Euclidean, irregular do-
mains. Graph SP (GSP) generalizes SP tasks to signals living
on non-Euclidean domains whose structure can be captured by
a weighted graph. Graphs are versatile, able to model irregu-
lar interactions, easy to interpret, and endowed with a corpus
of mathematical results, rendering them natural candidates to
serve as the basis for a theory of processing signals in more
irregular domains.

‘The term graph signal processing was coined a decade ago
in the seminal works of [1], [2], [3], and [4]. Since these papers
were published, GSP-related problems have drawn significant
attention, not only within the SP community [5] but also in
‘machine learning (ML) venues, where research in graph-based
learning has increased significantly [6]. Graph signals are well-
suited to model measurements/information/data associated
with (indexed by) a set where 1) the elements of the set belong
10 the same class (regions of the cerebral cortex, members of
a social network, weather stations across a continent); 2) there
exists a relation (physical or functional) of proximity, influence,
or association among the different elements of that set; and 3)
the strength of such a relation among the pairs of elements is
not homogeneous. In some scenarios, the supporting graph is
a physical, technological, social, information, or biological net-
work where the link tly observed. In many other
cases, the graph is implicit, capturing some notion of depen-

information of interest in current

Graph Signal Processing for Machine Learning

A review and new perspectives

ization of large-scale structured data, especally those related
to complex domains, such as networks and graphs, are one
of the key questions in modern machine learning. Graph signal
processing (GSP), a vibrant branch of signal processing models
and algorithms that aims at handling data supported on graphs
opens new paths of research to address this challenge. In this ar-
. we review a few important contributions made by GSP con-
cepts and tools, such as graph filters and transforms, to the devel-
opment of novel machine learning algorithms. In particular, our
discussion focuses on the following three aspects: exploiting data
siructure and eltonalpriors,improving data and computton-
1 model
we provide new perspectives on the future development of GSP
techniques that may serve as a bridge between applied mathe-
matics and signal processing on one side and machine learning
and network science on the other. Cross-fertilization across these
different disciplines may help unlock the numerous challenges of
complex data analysis in the modern age.

-I-m effective representation, processing. analysis, and visual-

Introduction

‘We live in a connected society. Data collected from large-scale
interactive systems, such as biological, social, and financial
ks, become largely available. In parallel, the past few

networl

decades have seen a significant amount of interest in the ma-
chine learning community for network data processing and
analysis. Networks have an intrinsic structure that conveys
very specific properties to data, e.g. interdependencies be-
tween data entities in the form of pairwise relationships. These
properties are traditionally captured by mathematical repre-
sentations such as graphs.

In this context, new trends and challenges have been devel-

ooyt Properties, such as smoothness, that need to be appropri- dence or similarity across nodes, and the links must be inferred oping fast. Let us consider, for example, a network of protein-
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Learning with covariance matrices: A GSP approach

> Signal and information processing is about exploiting signal structure

> Graph signal processing (GSP): broaden classical signal processing to graphs
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Learning with covariance matrices: A GSP approach

> Graph neural networks (GNNs) have been shown to be
stable to (abstract) perturbations in graph structure

generalizable to graph structures of different sizes

> Covariance matrix is a data-driven graph

o interplay between perturbation theory of covariances and ML over them

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



> PCA and the graph Fourier transform

» CoVariance neural networks (VNNs)

> Theory of VNNSs: Stability and transferability
> Variants of VNNs
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> PCA and the graph Fourier transform

» CoVariance neural networks (VNNs)

> Theory of VNNSs: Stability and transferability

> Variants of VNNs

Key takeaways:

> VNNs offer a novel GSP-inspired perspective to PCA
—> addressing challenges in modern data analysis

> Principled deep learning solution for finite-data regimes

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



PCA and Graph Fourier Transform
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A graph filter implementation of PCA inference

> To show: PCA-based inference can be implemented with a polynomial over C

Input PCA __ Learning

—

— Output

ad Readout
— h. Gk — — Output
data transform model data Z g P

function

Conceptually equivalent implementations
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A graph filter implementation of PCA inference

> To show: PCA-based inference can be implemented with a polynomial over C

Input PCA __ Learning

—

— Output

ad Readout
— h. Gk — — Qutput
data transform model data Z g P

function

Conceptually equivalent implementations
K

> How: Follows from the graph Fourier transform analysis of ) _7xC"*
k=0
> Implications:

- Alternative implementation of PCA-based inference using polynomial over C

- But more importantly, polynomial implementation is stable, transferable

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Preliminaries: Graph

> Graph: a triplet (V,E, W)

2 £ &
A set of nodes V = {1, ..., m} “ e
A set of (undirected) edges E € VXV
Edge between node i and j denoted by (i, j) e

An edge function W: E — R that maps edge (i, j)to weight w;; € R
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Preliminaries: Graph

> Graph: a triplet (V,E, W)

2 £ ™ &
A set of nodes V = {1, ..., m} “ e
A set of (undirected) edges E € VXV
Edge between node i and j denoted by (i, j) e

An edge function W: E — R that maps edge (i, j)to weight w;; € R

> Adjacency matrix representation of graph
rwz-j, if (Z,]) c b,

A i = <
Al 0, otherwise

\
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Preliminaries: Graph signal

> Graph signals are mappings x:V » R
—> graph signal is defined on the vertices of the graph

» Graph signal can be represented as a vector x € R™
—> x; denotes the graph signal at i-th vertexin V

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Preliminaries: Graph shift operator (GSO)

> To understand and analyze graph signal X, GSP accounts for the graph structure

> Graph structure is encoded in a graph shift operator S € R™*™

— [S];; = Ofori # jand (i,j) € E (S captures local graph structure)

( 511 512 0 0 515

(6 :

e e So1 Sz S23 0 Sas 0
S — 0 Saz3 S33 Sza O 0

e e —1 O 0 Siz Saa Sas Sue

Ss1 Ss2 0S54 Sss O
0 0 0 Sea 0 Ses )

> Examples: adjacency matrix, Laplacian

Covariance matrix is a data-driven adjacency matrix
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Preliminaries: Graph Fourier Transform (GFT)

> Generically, eigendecomposition of GSO S = UdU 1

> GFT is the projection of graph signal on the eigenvector space U
x=U"1x

> Inverse GFT is defined as

:> x=UX

Eigenvectors U = |u4, ..., U, | are the frequency basis

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



When GSO is covariance matrix...

> GFT over covariance matrix

Given eigendecomposition

GFT of X is

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



When GSO is covariance matrix...

> GFT over covariance matrix > PCA transform
Given eigendecomposition Projection of sample X on
& VAYT principal components of C
GFT of X is
% =V'x PCA transform: % =V 'x
s A

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Preliminaries: Graph filter

> Graph filter H maps graph signal X to another graph signal z via linear-shift-

and-sum operation
z = H(S)x,

K
where H := h,S® + h;S* + h,82 + -+ hSK = thsk
k=0
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Graph filter on covariance matrix

> Covariance matrix forms a fully-connected graph where X = [Z1,...,%6
- nodes are features

- edges are covariance values

> Graph filter on covariance matrix Cis defined as

K
H(C) = > hChx
k=0
X ~ CX ~ CQX ~ CBX
> C > C > C
lho lhl lhg hs
n n o\ HOx
O, () () () '
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CoVariance filter

A

> Analogy between H(C) and PCA

Using eigendecomposition C = VAV , it follows that

K K K
z =H(C)x = Z hi,Crx = Z thAkVTX = V(Z hkﬂk)VTX
k=0 k=0 k=0
l ' ) ]

Frequency response  PCA
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CoVariance filter

A

> Analogy between H(C) and PCA

Using eigendecomposition VAVT , it follows that

C
K K L K ,
z=H(Cx = mnCx=3 mVA Vx= V(Z h A )VTX
k=0 k=0 k=0

\ Y l\_"_’

Frequency response  PCA

GFT of coVariance filter output Z and PCA are equivalent

K
7= (Y mA")VTx
k=0

i-th component of Z is modulated by h(1;) = Yx_, hk/u'{

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Learning with coVariance filter versus PCA-based learning

> Learning with a coVariance filter
Input coVariance . Readout _ Inference
data filter function output
I
|
I- -------- J ------------------ . |
| l
| [
| I
| l
| [
| I
| l
| [
| I
| - - - l
. Eigenvalue, A, Ay A3, Ay, - :
: Eigenvector v, v, V3 D, Vm :
-
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Learning with coVariance filter versus PCA-based learning

> Learning with a coVariance filter
Input —, CcoVariance . Readout _ Inference
data filter function output
I
|
e R el .
| 0
| l
| [l
I ,&’-\\ I
| ,/' \\ [
| )2 \ [l
| P \\ l
| ' e '
T D T T et = S S [
| - - - 0
. Eigenvalue, A;, A, A3, 1, - :
: Eigenvector v, v, V3 D, Vm :
-
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Learning with coVariance filter versus PCA-based learning

> Learning with a coVariance filter
Input —, CcoVariance . Readout _ Inference
data filter function output
I
I
e ——————— R el -
I ]
I . [
| ) fl(.lz) :
: h(/ll,,,”’ \\\ :
I \
/ N A I
I l, ~ S - h(A‘l') I
l i) I R TR
I . A A A A A
. Eigenvalue, A1;, Ay, A3, Ay, Amo :
: Eigenvector v, v, V3 D, Vm :
3
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Learning with coVariance filter versus PCA-based learning

> Learning with a coVariance filter > PCA-based learning
Input —, coVariance = Readout _ Inference Input PCA Regression Inference
data filter function output data transform . model output
I
l I
= e e e e e e B [ ——— —— B e e o e e - o
| 1| I
| . 1| I
I _ hid) ok I
: h()ll,,,” \\\ I | [
| , Lol :
| /s’ A\\ h(/Ll_) [ I I
ROV [l
: i) B AR SRR | :
. " " . - X ! " ~ 2 A -
. Eigenvalue, A1;, Ay, A3, Ay, Amo : ! Eigenvalue, A;, Ay, A3, Ay, A :
: Eigenvector v, v, V3 D, Vm : : Eigenvector v, UV, V3V, (7 :
5 B
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Learning with coVariance filter versus PCA-based learning

> Learning with a coVariance filter » PCA-based learning
Input —, coVariance = Readout _ Inference Input _, PCA Regression Inference
data filter function output data transform . model  output
I
l I
= e " | pree—————————— T o o o e o S
| 1|1 |
| ~ [ I [
' _ hita) : : B2 ¢ :
| hid1)" I, 1| |
I , \\\ : I ﬁl EB :
| /s e h(A) I : B !
' h(A3 I"T ~~~~~ | I |
l ha o TONNE ° : : . o o !
| : A A A A o . A A A A R
. Eigenvalue, A4, Ay, A3, Ay, A, : ! Eigenvalue, A4, Ay, A3, Ay, Am, :
: Eigenvector v, v, V3 D, Vm : : Eigenvector v, UV, V3V, VU, :
L .
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coVariance Neural Networks (VNNs)
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coVariance filters as convolutional operators

> Operation Chrx performs a k-shift of signal X over graph defined by C

> Parameters {h;} are called filter taps, are scalars and learnable parameters

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



CoVariance Neural Networks (VNNSs)

> coVariance filters can learn only linear representations
» To accommodate learn non-linear representations, concatenate coVariance

filter with pointwise non-linearity o (for e.g., ReLU, sigmoid, etc.)
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CoVariance Neural Networks (VNNSs)

> coVariance filters can learn only linear representations
» To accommodate learn non-linear representations, concatenate coVariance

filter with pointwise non-linearity o (for e.g., ReLU, sigmoid, etc.)

Example: A two-layer VNN

: R
j-====Data X==p VNN = Qutput ®(x;C,H)

T

K
Hy(C) =) h;CF =l of:)
k=0

t
C

L, ®(x, C; H)
ey Learning

outcome

|

|

|

|

|

|

| R =
:Layerz Hy(€) =3 hopCF =l ()
I k=0
|

|

|

|

|

|
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CoVariance Neural Networks (VNNSs)

> coVariance filters can learn only linear representations
> To accommodate learn non-linear representations, concatenate coVariance

filter with pointwise non-linearity o (for e.g., ReLU, sigmoid, etc.)

Example: A two-layer VNN

: R
j-====Data X==p VNN = Qutput ®(x;C,H)

t

A

C
> O (x; C, H) represents VNN output

T

K
Hy(C) =) h;CF =l of:)
k=0

> H is set of all filter taps

L, ®(x, C; H)
ey Learning

outcome

|

|

|

|

|

|

| R =
:Layerz Hy(€) =3 hopCF =l ()
I k=0
|

|

|

|

|

|
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VNNs outperfo

rm PCA (regression task)

Synthetic data Neuroimaging data
4.2 -I. ? e VNN
2 i a —+-- PCA-LR
T e | A O R T PCA-rbf
\ .:I'I
I O A 1
4.0 m i ﬁ?‘l“: !
1y | E;:."\,'.‘%;% ] : H 10
3.91 I @it i i
L THRTHRL il | L
s F2MEER Hf z
z 24 g - I ITRf] z °E
3.7 | A gk
A HH i
3.6 ";i:' :“:i 8|
3l 8 | |- PCA-LR i
S I PCA-rbf | "
0 200 400 600 800

number of samples, n
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0 50 100 150 200 250 300 350
number of samples, n
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Stable Inference with VNNs
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Stability of inference with PCA and VNNs

> PCA-driven inference can be Performance on regression task
i —— VNN
: —e- PCA-LR
unstable to stochastic I s
perturbations in sample covariance 61

matrix (finite sample effect) <

> VNNs provide stable outcomes

|:> enhanced reproducibility 4

0 50 100 150 200 250 300 350
number of samples, n

A

C,,: estimated from n samples
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Stochastic perturbations in sample covariance matrix

» Recall: Sample covariance matrix C is estimate of true covariance matrix C

>k — )k — )T C=E[(x—p)(x—p)]

—> eigenvectors/eigenvalues V, A of C are estimates of V, A of C
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Stochastic perturbations in sample covariance matrix

» Recall: Sample covariance matrix C is estimate of true covariance matrix C

1
n—1

n

> (xi— ) — )T C=E[(x—p)(x—p)]

1=1

C=

—> eigenvectors/eigenvalues V, A of C are estimates of V, A of C

> Convergence betweenV, A andV, A [*]

[Vx — Vx| =0 ( ! )

n1/2mini¢j |)\z — )\j‘
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Stochastic perturbations in sample covariance matrix

» Recall: Sample covariance matrix C is estimate of true covariance matrix C

LS k- mxi-a)T C=R(x— p)(x— )"

n—14%4
1=1

C=

—> eigenvectors/eigenvalues V, A of C are estimates of V, A of C

> Convergence betweenV, A andV, A [*]

[Vx — Vx| =0 ( ! )

n1/2min7;7gj ’)\z — )\j‘

4 )

—>| Unstable PCA transform when eigenvalues of covariance are close

- J
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Stability of coVariance filter

» How to gauge stability?

x— H(C) .z = H(C)x

—> Output Z must be robust to number of samples n used to estimate C
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Stability of coVariance filter

» How to gauge stability?

x— H(C) .z = H(C)x

—> Output Z must be robust to number of samples n used to estimate C

> Compare filter outputs for sample and true covariance matrix

x —  H(C) —~z=H(C)x x— H(C) -z = H(C)x

—> metric of interest: IH(C) - H(C)|

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Stability of coVariance filter

X — H(C) .z=H(Cx x— H(C) .z = H(C)x

Stability result

o) mo <o

coVariance filter output is
asymptotically consistent

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Stability of coVariance filter

X — H(C) —z=H(C)x
Stability result
[H(©) - HO)| =0 (=)
Assumption.

Frequency response of filter H(C) satisfies

(A - ()] < QP!

X —> H(C) -z = H(C)x

coVariance filter output is

— asymptotically consistent

coVariance filter sacrifices
~ discriminability between close
eigenvalues for stability

Sihag, Mateos, Isufi, Ribeiro
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Recall: Learning with coVariance filter versus PCA-based learning

> Learning with a coVariance filter > PCA-based learning
Input —, coVe';lriance _, Readout  Inference Input _,  PCA Regression Inference
data filter function output data transform model output
|
[ I
e m————— Y e | e ——— T o — =
i 11 ]
i . 111 [
| - hizz) : | By o i
: h(/‘{];,/', \\\ | i |
I ) : | By B3 :
: ’ h(A N P.M‘*) 111 ‘ Ba [
i ° I | BN S . : I FPRR -
I . A A A~ oA ~ : A A 5 a2 A
1 Eigenvalue, A, Ay, Az, Ay, Amo : : Eigenvalue, A;, Ay, A3, Ay, Amo :
: Eigenvector 9, ¥, D3 D, V., : y Eigenvector v, v, V3V, VUi :
e e o — — — — — —————————_——_—_ L o e e e e e e e e
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Why is coVariance filter more stable than PCA?

> Learning with a coVariance filter > PCA-based learning
Input —, coVe';lriance _, Readout  Inference Input _,  PCA Regression Inference
data filter function output data transform model output
|
[ I
e m————— Y e | e ——— T o — =
I 111 [
I 111 [
I 11 [
[ ,r”-\\ : [ :
| // \\ | I ﬁ |
0 /', \ l : ? ﬁ I
l /’ RN - h(4 4
[ h(ds)] T~(-.4.). 1 ] |
: ———— N — |
1 Eigenvalue, A3, ,14, : ! Eigenvalue, A3, Ag, :
: Eigenvector Vs D, : : Eigenvector D3 D, :
e e e e . . — — — e — ——_——_——_—————_——_—— ] L o o o o o o o o e o o o o o o o o o o o o o
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Why is coVariance filter more stable than PCA?

> Learning with a coVariance filter

Input —, coVariance Readout _ Inference
data filter function output
]
[
--------- J------------------
[
]
]
I e e
[ Rl \\
I ,l, \
| /’ \‘\
I / RN (A3)
2 Sp-- 13
: h(M)I T _______________
[ Ei l A
: igenvalue, L4, A3,
| Eigenvector v, D3
h

> PCA-based learning

Input __, PCA Regression Inference
—_— —
data transform model output
i
o e T o o e e e E
: Overfitting on the ordering of I
[ eigenvalues is source of instability |
l
| s .
I B3 :
[
I Ba I
I I I
[ - l
: Figenvalue, Ao, A3, :
i Eigenvector VU, Vs [
L o e o o o e . . i — . — — — — — — — — — — — — — —— — — I
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Stability of VNNs

v

> VNNSs inherit the stability from coVariance filters L TPRTN LS
- Stability bound depends on the bound for filters = =
R 1 L x5 = o(x; &, 1)
HH(C) - H(C)H — 0 ( . ) = ay,
nz —¢

- For a VNN with L layers and F filters in parallel,
H(I)(X, C;H) — d(x, C;H)H < LFt=ta,

- Stability bound increases with number of layers and

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Stability of VNNs: Experiments

> Regression task

» Comparison against PCA-regression

Data: cortical thickness dataset (m =

» Metric: MAE (mean absolute error)

—— VNN
—+- PCA-LR
----- PCA-rbf

0 50 100 150 200 250 200 3[R0

Cortical thickness

VNN —— Estimate of age
data

104) from (n = 341) human subjects

VNN: coVariance Neural Network
PCA-LR: PCA-regression with linear kernel
PCA-rbf: PCA regression with rbf kernel

VNN outperforms PCA and is more stable
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Transferability of VNNSs
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Empirical evidence of transferability across multiscale data

> Transferability across multiscale datasets

- Multiscale datasets capture same phenomenon at different scales

VNN —— Estimate of age

Transferability across datasets with different number of features

Training 100-feature dataset | 300-feature dataset

‘ 5.39 + 0.084 5.5+ 0.101
100-feature dataset

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Transferability

> Learning models could generalize to compatible datasets

> compatible: different dimensionalities and describing the same domain
Remote sensing

Space-Borne
(Low-Resolution)

\{
Air-Borne

(Medium-Resolution)

Ground-Based
(High-Resolution)

Brain imaging data
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Transferability

> Learning models could generalize to compatible datasets

> compatible: different dimensionalities and describing the same domain

D DD

Brain imaging data

Remote sensing

Space-Borne
7 (Low-Resolution)

\4
Air-Borne

(Medium-Resolution)

Ground-Based
(High-Resolution)

> Motivation: novel metric for generalizability,
managing high dimensional data...

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Transferability

> Most statistical approaches, including PCA, operate within the dimensionality
|:> seamless transference not possible across different dimensionalities
> This section: How do VNNs transfer?

When is transference successful?

Space-Borne
7, (Low-Resolution)

\\\l
Air-Borne
(Medium-Resolution)

Ground-Based
(High-Resolution)

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



coVariance filters are scale-free models

‘ mq-dimensional data processing mz-dimensional data processing ‘

K K
L ,
Xml kzo hkcmlxrm ' H(le)xml .Xm2 E— Z hkC?’f,l2xm2—>
pr— k;—

H 1L,

learnable parameters

> A coVariance filter H(-)with scalar filter taps {h;} can process dataset (covariance matrix)
of any arbitrary dimensionality: scale-free model

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



VNNs as scale-free models

‘ m1-dimensional data processing mo-dimensional data processing ‘

Xml —_— VNN — (D(Xm17 le"}-[> _XTI’LQ —_— VNN

learnable parameters

How to compare ®(x,,,,; Cn,, H) and ®(x,,,; Cyny, H)?
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VNNs as scale-free models

‘ m1-dimensional data processing data processing in continuous limit ‘

Xmy — VNN — &(x,,,; Cpny, H) Y —  UNN  — P(y; W, H)

e '_ d 1.0
A r 0.8 .‘.
e S B
it C H W -

) ....-.‘-» l':u- -I ml

S Ik o

o g i !

- A

g oy

0'%.0 0.2 04 06 08 1.0

learnable parameters _ o
Continuous limit of

covariance matrices

asm — oo
How to compare ®(x,,,,; Cyn,, H) and ®(yx; W, H)?
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Graphons as continuous limits

> Graphs can have limit objects with uncountable number of nodes

> Example: Stochastic block models

0.7
06
E =05
0.4
03

Balanced SBM Unbalanced SBM
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Graphons as continuous limits

> Graphon: A graphon is a symmetric, bounded measurable function
Node labels are graphon arguments u € [0,1]
edge weights are graphon values W(u,v) = W(v, u)
W:[0,1]° =R

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Graphons as continuous limits

> Graphon: A graphon is a symmetric, bounded measurable function
- Node labels are graphon arguments u € [0,1]
- edge weights are graphon values W(u, v) = W(v, u)
W:[0,1]° =R

> Transferability when covariance matrix is part of some converging sequence

Symmetric continuous
function (graphon) W

1.0
0.8{
0.6
0.4

0.2

0'%.0 02 04 06 08 1.0
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Problem formulation for transferability

Representation of discrete VNN

Data x my features
my (M1 ) output on interval [0,1]

m1 partitions

Covariance matrix C,,,
(size my X ml) H

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Problem formulation for transferability

Data x,,, (m; features) Representation of discrete VNN
o } output on interval [0,1]

0-
Covariance matrix C,,, 1
(size my1 X mq) H

1

0.8{ = y
— VNN _’(I)(y)“W’H) snnnnnnnnP |: : :

0'%.0 0.2 04 06 08~ 1.0 1 O 1
Covariance matrix limit W

(defined on [0,1]°)  Continuous data limit

0.6

0.4

0.2
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Problem formulation for transferability

Representation of discrete VNN
output on interval [0,1]

Data x,,,, (mi features)

Covariance matrix C,,,
(size my X ml) H

1

— VNN _’(I)(y)“W’H) snnnnnnnnP

0'%.0 0.2 04 06 08~ 1.0 1 O 1
Covariance matrix limit W

(defined on [0,1]°)  Continuous data limit

0.81 i
0.6

0.4

0.2

Find 9, such that, ||y, — yll2 < ¢
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VNNs are provably transferable

Y 1
my partitions 0 1

D (X, Cony, H)

H

090 02 04 06 08 1.0

learnable parameters

Transferability bound*

1
s — 3l ox O (mgg/g_l) for ¢ € (2/3,1]

1
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VNNs are provably transferable

\ Y 1
my partitions 0 1

(I)(Xml; Cny, 7—[) Yx—— VNN

g L

learnable parameters

0'%.0 0.2 04 06 0.8-1.0

- "
Transferability bound * Assumption: data is a discretization of a common

continuous model Symmetric continuous
function W

1
||ym1 o y” x O mSC/Q_l ) for C S (2/37 1]

1

1.0y

0.8

0.6

0.4

0.2

o'%AO 02 04 06 08 1.0
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VNNs are provably transferable

I 1

ma paFtitions

D (x5 Conyy H) Yx—— VUNN —— O(x,,,;Cpyy H)

“ “ H I L C

learnable parameters

mo

Transferability bound

1 1
Hyml o ymz” X O( 3¢/2—1 + 3</2_1> ) for C < (2/37 1]
my ms
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Experiments

Objective: Brain age gap prediction in HC (healthy) and AD+ (Alzheimer’s) cohorts from
VNNSs trained on 100-feature dataset

6 @ @ @ @ @ * ROIls contributing to elevated

100 parcels 300 parcels 500 parcels brain age gap in AD+ across
@ @ @ @ @ @ different resolutions

 Brain age gap is elevated in

FTDC100* FTDC300 FTDC500
AD+ w.r.t HC cohort in 100-
o feature dataset

:?)’4.0 :?)’4‘0 .

9. < 2 * Results on brain age gap
retained after transferring
N VNN to 300 and 500-feature

HC AD+ HC AD+ HC AD+

datasets
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Variants of VNNs
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Are VNNs enough?

> Limitations of VNNs

- Sample covariance could be poor quality in low data, high dimensionality
setting
- High computational cost (quadratic in size of matrix for dense covariance)

- No considerations of temporal, evolving data

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



ST EICERNNE

> Sparse VNNs (S-VNN) rely on sparsification of sample covariance matrix

Empirical covariance True covariance

> Sparsification improves estimation quality

> Strategies to sparsify

- Hard thresholding
n(é)w = éij if ‘67/]| Z T/\/ﬁ, 0 otherwise
- Soft thresholding

U(C)Z] = éij — sign(éz-j)T/n if |é@3| 2 T/\/ﬁ, 0 otherwise
- Both thresholding strategies preserve stability in S-VNNs

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Sparse VNNs: Numerical results

> Train VNNs/PCA on one covariance and test on another covariance estimated
from less samples

-
- oo] Ml i AU Results
2, 75_:’.__ s VI Gt bt * S-VNN (both soft and hard thresholding)
= Gih e .
Lol AR O Sl M e, outperform PCA and nominal VNNs
OU T X Xy o Ty 4
y ¥y %
%
. * VNNs more stable than PCA
0 200 400 600 800
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Spatiotemporal VNNs

> VNN models discussed so far operate on static data

[—> non-trivial modifications needed to handle temporal, non-stationary data

> Spatio-temporal VNNs (STVNNs)
-  Model design

1. Online covariance matrix estimate
Cir1 = GG+ 5t(Xt+1)(Xt+1)T

2. Spatio-temporal coVariance filter
T—1 K

Spatial and temporal
Z; (= H(Ctahtath E E hkt’c Xt—t! P uti P
—oh—o convolution
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Spatiotemporal VNNs

STVNNSs are stable to estimation errors in covariance [*]

Numerical results
- Time series forecasting task (weather data and currency exchange rates)

- Train with one covariance, test with another estimated from fewer samples

8 —— STVNN (T=1) —— STVNN (T=10) g —— STVNN (T=1) —— STVNN (T=10) s
§ 10"y — STVNN (T=5) —— TPCA cf) 10°4 —— STVNN (T=5) —— TPCA §
ST
bol() L ?Olo—L ?{)
= = =
% . M % _9 % -9
£107 £10 S107%  gromy (T=1) —— STVNN (T=10)
5 5 mE —— STVNN (T=5) —— TPCA
1073 = , : , , , , 1073 : : : : : 1073 ' ; ; ; —1
0 1000 2000 3000 4000 5000 6000 0 100 200 300 400 500 0 1000 2000 3000 4000 5000
Samples Samples Samples
NOAA Molene Exchange rate
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Concluding Remarks

> Learning with covariance matrices

- Covariance matrices encode redundancies within dataset

- their eigenvectors (principal components) inform the directions of
maximum variance

- PCA-driven methods can be unstable

- PCA operates restricted to datasets of same dimensionality

> CoVariance neural networks (VNNs)

- VNNs provide GSP-motivated implementation of PCA
- Stable outcomes, transference across multiscale datasets

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Concluding Remarks

> Emerging areas we did not cover in detail
. Sparse VNNs: sparsifying covariance matrix
- Spatiotemporal VNNs: temporal datasets

« Fair VNNSs: unbiased outcomes with VNNs

- Optimality of covariance matrices: suitability of covariance to learning task

Application to brain age gap prediction

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications
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Principled brain age gap prediction with VNNs
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Neuroimaging Data: Basics

> Data sample corresponds to measurement associated with
X = [xl,...,:cm]

brain (cortical) surface CHEE

> Brain surface is divided according to brain atlases

|:> datasets may have distinct dimensionalities

Anatomic features

> Multi-resolution brain atlas discretizes brain surface at multiple resolutions

(for e.g., Schaefer’s atlas has resolutions 100-1000)

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Brain age gap is a marker of neurodegeneration

» Individual rate of “aging” is different from chronological rate of aging
* Driven by environment, genetics, behavior, neurodegeneration

» Brain age provides a biological estimate brain age, derived from brain
imaging modalities

» The brain age gap is the deviation between brain age and chronological

age

Brain age - individual risks for neurological,
gap Brain age gap < neuropsychiatric
and neurodegenerative diseases

B Healthy ™ Neurodegeneration

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Brain age gap evaluation using ML

Step 1. Train ML model to predict chronological age for healthy controls from cortical thickness features

Least squares line

perfect fit
line ~~ " "obtained on outputs of
ML model
)
o0
Neuroimaging data from . . o
eur0|mag.|ng. .a armom ML Model 8 /.-
healthy individuals 85 |-
©
o
LS
o
True age
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Brain age gap evaluation using ML

Step 1. Train ML model to predict chronological age for healthy controls from cortical thickness features

Least squares line

perfect fit
line ~~ " "obtained on outputs of
ML model
O
o0
Neuroimaging data f . . o
eur0|mag.|ng. .a airtrom ML Model 8 /.-
healthy individuals 85 |-
e,
o
| -
o
True age

Step 2. Linear regression-based age-bias correct for outputs of ML model

Step 3. Obtain brain age gap for healthy controls and individuals with neurodegenerative condition.
m Healthy m Neurodegeneration
Brain age gap =

Data from — ML Model — Age-blgs -p Bias-corrected ML model =% Brain age
all cohorts correction
output —True age gap

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Choice of learning parametrization

| Healthy ®Neurodegeneration

Brain age gap =

Neuroimaging Age-bias L Brain age -
data - ML Model =———> correction -  Bias-corrected VNN =—> gap -

output - True age

> Choice of ML model determines how information is leveraged to gauge brain age
> Prevalent approaches leverage neural networks as ML model to achieve best fit on healthy
population: Performance-driven approach

> Performance-driven approaches do not necessarily lead to a 'meaningful’ brain age gap
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Choice of learning parametrization

> Neural networks are prevalent in performance-driven approaches
> A Neural Network may not be interpretable and prone to overfitting

I:> methodological obscurity in brain age gap prediction pipeline
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VNNSs provide an anatomically interpretable and explainable brain age gap

B HC m Neurodegeneration

—
. — e Brain age gap = _
Cortical — VNN 3z — C'Ac‘)%ree:’l?osn —>  Bias-corrected VNN — Brain age --
thickness — output - True age &ap
4
0
Mo - m1
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VNNSs provide an anatomically interpretable and explainable brain age gap

B HC m Neurodegeneration

—
. — Age-bias Brain age gap = _
Cortical —yp VNN 2 3 — . —>  Bias-corrected VNN — Brain age
thickness — correction output - True age &ap

A A

m Healthy ® Neurodegeneration

g MR @ & .
egional
Residual
I

regional residuals in neurodegeneration brain age gap in neurodegeneration
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VNNSs provide an anatomically interpretable and explainable brain age gap

B HC m Neurodegeneration

—
. — Age-bias Brain age gap = _
Cortical — 5  yNN 3 5 —» 5O —>  Bias-corrected VNN —> Brain age
thickness — correction output - True age &ap

A A

m Healthy ® Neurodegeneration
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i - i i brain age gap in neurodegeneration
Principal components regional residuals in neurodegeneration

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Experiments

> Participants from OASIS-3 dataset [*], 148 cortical thickness features per individual

Number 611 194 .
HC group: cognitively normal
Age 68.38 (7.62) 74.72 (7.02) AD group: AD diagnosis
Sex (m/f 260/351 100/94 e ) )
(m/h) CDR: Clinical dementia rating
CDR sum of boxes 0 3.45 (1.74)

> Brain age gap is elevated in AD group and correlated with CDR sum of boxes

p = 0.474 (p-value = 2.88 x 10712

Anatomical interpretability
[*] Pamela J LaMontagne, et al. OASIS-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer disease. MedRxiv, 2019

OASIS-3 (DKT atlas)
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Experiments

» VNN distinctly exploits eigenvectors in AD and HC groups

Eigenvector 1 Eigenvector 2
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HC AD AD

I:> explains anatomical interpretability of brain age gap in AD
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Recap: Transferability of VNNs cross-validates brain age gap in multi-resolution setting

Objective: Brain age gap prediction in HC (healthy) and AD+ (Alzheimer’s) cohorts from
VNNSs trained on 100-feature dataset

6 @ @ @ @ @ * ROIls contributing to elevated

100 parcels 300 parcels 500 parcels brain age gap in AD+ across
@ @ @ @ @ @ different resolutions

 Brain age gap is elevated in

FTDC100* FTDC300 FTDC500
AD+ w.r.t HC cohort in 100-
o feature dataset

:?)’4.0 :?)’4‘0 .

9. < 2 * Results on brain age gap
retained after transferring
N VNN to 300 and 500-feature

HC AD+ HC AD+ HC AD+

datasets
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