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Covariance Matrix

» Covariance matrix captures the redundancies between data points (features)
- Brain datasets: some areas of the brain activate together
- Financial datasets: stock prices fluctuate in tandem

- Traffic datasets: traffic volume is correlated across intersections

ooooooooo
Beverly Hills

Finance Traffic
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Covariance Matrix

> Evaluating a covariance matrix
. . ™m
. Consider a random variable X € R

- The covariance is

C =E[(x — p)(x — p)"], where p = E[X]

- In practice, we have sample covariance matrix (an estimate)

. 1 1 —
C = i — ) (x; —p)', wh L = — U
>_(xi— ) (xi — )7, where =~} x

1=1 1=1
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Covariance Matrix

> Covariance matrix encodes redundancies between different features in data

Covariance matrix Low redundancy High redundancy
(2-feature dataset) (smaller g (11,17)) (higher o (11, 17))

J2(7"1) o (1r,12)

Feature ry Feature ry

o (11,713) o° (12)

Feature 1, Feature 1,

o (1q,17) = how features ry and r;, vary with respect to each other
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Covariance matrices are widespread in signal processing and machine learning

> Principal component analysis (PCA)

- Eigenvectors of the covariance matrix form principal components (PCs)
- PCs inform the shape of a dataset (directions of variance)

A

Given sample x and eigendecomposition C = VAVT,

PCA transform: x =V 'x

PCA transform in ML

Principalcomponent2 £

g R o Unsupervised learning (dim. reduction)
A Principatcomponent1 o Supervised learning (regression,
O, | _

classification)
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Covariance matrices are widespread in signal processing and machine learning

> Covariance matrices are leveraged as graphical representations of data
- AgraphG = (V,E, W)
o SetofnodeslV/ o A weightfunction W

o SetofedgesE X = [¥1,..., T

- Covariance matrix is a fully connected graph,

o nhodes are the features

o edges associated with pairwise covariance values
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Covariance matrices are widespread in signal processing and machine learning

> Covariance matrices as graphical representations; used in graph neural nets
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Learning with covariance matrices: Challenges

> Sample covariance matrix is estimate from finite data

Input data —— S . Output
model

> ML model is trained on training dataset, I

deployed on test dataset _ _

Covariance matrix
. 1 A A
> Statistical spaces defined by training and C=—=> (xi—a)xi— )"
. 1=1
test data may not align perfectly

Representation of ,
training dataset

Representation of
test dataset
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Learning with covariance matrices: Challenges

> Sample covariance matrix is estimate from finite data

Input data —— S - Output
model

> ML model is trained on training dataset, I

deployed on test dataset _ ,

Covariance matrix
. 1
> Statistical spaces defined by training and C=——7D (xi-m)bxi—p)
. 1=1
test data may not align perfectly Representation of |
Challenge 1 (stability) training dataset

Are inference outcomes stable to

perturbations in covariance matrix Representation of
(finite sample effect)? test dataset
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Learning with covariance matrices: Challenges

> Datasets capture information about same phenomenon at different scales

Dataset with m4 features Dataset with m, features

Covariance matrix C,,, Covariance matrix G,
(size my X m1) (size ma X m2)
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Learning with covariance matrices: Challenges

> Datasets capture information about same phenomenon at different scales

Dataset with m4 features Dataset with m, features

M ey

e P
T
s ';'.".'-";_
e
L)
ﬂ’.’.lb

e
T e, o P

"?':.;- 3 40
" e .
% 20 Sn % 20 40 . . m
Covariance matrix C,,, Covariance matrix G,
(size my X m1) (size ma X m2)
ML ML
Input data Inputdata __| 0
: , model — Output di ional model — Output
(m4-dimensional) - (m;-dimensional) Co
mi

Challenge 2 (transferability)
Can the redundancy in covariance matrices of datasets of different sizes be exploited?
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Learning with covariance matrices: A GSP approach

> Signal and information processing is about exploiting signal structure

> Graph signal processing (GSP): broaden classical signal processing to graphs
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ABSTRACT | Research in graph signal processing (GSP) aims
to develop tools for processing data defined on irregular graph

Graphs offer the ability to model such data and complex

‘domains. In this paper, we first provid of coreideas in

inerctions g them, For example, users on Twitter can be
o N - "

GsP and their connection to conventional digital signal processing,
along with a brief historical perspective to highlight how concepts.
recently developed in GSP build on top of prior resean:h in other
areas. We

in P

asedges “This paper and
modeling hoseas signalsonagraph forexample. yea of graua-

inaweather: tc. D d cl: |

tools, including methods for sampling, filtering, or graph learning.
Next, we review progress in several application areas using GSP.

signal processing concepts and tools such as Fourier transform,
ferng,an fequency response t dita residing on grphs. I

l sensor biological
data, and i

KEYWORDS | Graph signal processing (GSP); network science
and graphs; sampling; signal processing

I. INTRODUCTION AND MOTIVATION

Data is all around us, and massive amounts of it. Almost
every aspect of human life is now being recorded at all lev-
els: from the marking and recording of processing inside the
cells starting with the advent of fluorescent markers, to our
personal data through health monitoring devices and apps,
financial and banking data, our social networks, mobility
and traffic patterns, marketing preferences, fads, and many
‘more. The complesity of such networks [1] and i

ling na princi-
pled way. The ﬁcldthalgat}\cr: all these questions under a com-
mon umbrella i graph signal processing (GSP) 2}, [3].

While the precise definition of a graph signal will be
given later in the paper, let us assume for now that a graph
signal is a et of values residing on a set of nodes. These nodes
are connected via (possibly weighted) edges. As in classical
signal processing, such signals can stem from a variety of
domains; unlike in classical signal processing, however, the
underlying graphs can tell a fair amount about those signals
through their structure. Different types of graphs model dif-
ferent types of networks that these nodes represent.

‘Typical graphs that are used to represent common real-
world data include Erdds-Reényi graphs, ring graphs, random

means that the data now reside on irregular and complex
structures that do not lend themselves to standard tools.

eometric graphs, small-world graphs, power-law graphs,
graphs, scale-free graphs, an
These model networks with random connections (Erdfs-
Rényi graphs). networks of brain neurons (small-world
‘graphs), social networks (scale-free graphs), and others.
As in classical signal processing, graph signals can have

Graph Signal Processing

History, development, impact, and outlook

ignal processing (SP) excels at analyzing, processing, and

inferring information defined over regular (first continu-

ous, later discrete) domains such as time or space. Indeed,
the last 75 years have shown how SP has made an impact in
areas such as communications, acoustics, sensing, image
processing, and control, to name a few. With the digitaliza-
tion of the modern world and the increasing pervasiveness of
data-collection mechanism
applications oftentimes arises in non-Euclidean, irregular do-
mains. Graph SP (GSP) generalizes SP tasks to signals living
on non-Euclidean domains whose structure can be captured by
a weighted graph. Graphs are versatile, able to model irregu-
lar interactions, easy to interpret, and endowed with a corpus
of mathematical results, rendering them natural candidates to
serve as the basis for a theory of processing signals in more
irregular domains.

‘The term graph signal processing was coined a decade ago
in the seminal works of [1], [2], [3], and [4]. Since these papers
were published, GSP-related problems have drawn significant
attention, not only within the SP community [5] but also in
‘machine learning (ML) venues, where research in graph-based
learning has increased significantly [6]. Graph signals are well-
suited to model measurements/information/dataassociated
with (indexed by) a set where 1) the elements of the set belong
10 the same class (regions of the cerebral cortex, members of
a social network, weather stations across a continent); 2) there
exists a relation (physical or functional) of proximity, influence,
or association among the different elements of that set; and 3)
the strength of such a relation among the pairs of elements is
not homogeneous. In some scenarios, the supporting graph is
a physical, technological, social, information, or biological net-
work where the link tly observed. In many other
cases, the graph is implicit, capturing some notion of depen-

information of interest in current

Graph Signal Processing for Machine Learning

A review and new perspectives

ization of large-scale structured data, especally those related
to complex domains, such as networks and graphs, are one
of the key questions in modern machine learning. Graph signal
processing (GSP), a vibrant branch of signal processing models
and algorithms that aims at handling data supported on graphs
opens new paths of research to address this challenge. In this ar-
. we review a few important contributions made by GSP con-
cepts and tools, such as graph filters and transforms, to the devel-
opment of novel machine learning algorithms. In particular, our
discussion focuses on the following three aspects: exploiting data
siructure and eltonalpriors,improving data and computtion-
1 model
we provide new perspectives on the future development of GSP
techniques that may serve as a bridge between applied mathe-
matics and signal processing on one side and machine learning
and network science on the other. Cross-fertilization across these
different disciplines may help unlock the numerous challenges of
complex data analysis in the modern age.

-I-m effective representation, processing. analysis, and visual-

Introduction

‘We live in a connected society. Data collected from large-scale
interactive systems, such as biological, social, and financial
s, become largely available. In parallel, the past few

networks

decades have seen a significant amount of interest in the ma-
chine learning community for network data processing and
analysis. Networks have an intrinsic structure that conveys
very specific properties to data, e.g. interdependencies be-
tween data entities in the form of pairwise relationships. These
properties are traditionally captured by mathematical repre-
sentations such as graphs.

In this context, new trends and challenges have been devel-

ooyt Properties, such as smoothness, that need to be appropri- dence or similarity across nodes, and the links must be inferred oping fast. Let us consider, for example, a network of protein-
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Learning with covariance matrices: A GSP approach

> Signal and information processing is about exploiting signal structure

> Graph signal processing (GSP): broaden classical signal processing to graphs
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Learning with covariance matrices: A GSP approach

> Graph neural networks (GNNs) have been shown to be
stable to (abstract) perturbations in graph structure

generalizable to graph structures of different sizes

> Covariance matrix is a data-driven graph

interplay between perturbation theory of covariances and ML over them

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Applications to network neuroscience

> Covariance matrices appear commonly in network neuroscience

Anatomical covariance matrix Functional connectome

> Principled ML approaches for reproducible, transparent, generalizable findings

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Applications to network neuroscience

> Covariance matrices appear commonly in network neuroscience

Anatomical covariance matrix Functional connectome

> Principled ML approaches for reproducible, transparent, generalizable findings

> Brain age gap is a biomarker that reflects neurodegeneration  Healthy
m Neurodegeneration

- How VNN theoretical advances provide principled Brain age -
brain age gap prediction? gap | -

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



coVariance neural networks

> coVariance neural networks (VNNs): i

SPECIAL ISSUE ON ACCELERATING BRAIN DISCOVERY
THROUGH DATA SCIENCE AND NEUROTECHNOLOGY

GNNs operating on covariance matrices

&

Saurabh Sihag®, Gonzalo Mateos®, and
Alejandro Ribeiro

Disentangling Neurodegeneration With Brain Age Gap

Prediction Models
> Two tutorial articles in IEEE SPM A groh sl rcesing ppec

- Tutorial article on ‘Disentangling
neurodegeneration with brain age gap prediction
models’ (to appear in 2025) .

- Tutorial article on ‘CoVariance Neural Networks:
Principal Component Analysis Meets Learning

with Graphs’ (under preparation)
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function of neurons in the brain. Reduction in cortical

thickness or volume over time has been a workhorse metric
used to assess neurodegeneration in clinical settings; see case
study 1 in “Case Study 1: Cortical Atrophy Characterizes Neu-
rodegeneration in Alzheimer’s Disease” for a demonstration of
cortical atrophy assessment in the context of Alzheimer’s dis-
ease (AD) relative to healthy individuals [healthy cohort (HC)
group]. Naturally, visual inspection of T1-weighted brain mag-
netic resonance imaging (MRI) images and associated MRI
quantification products are used along with other biological
measurements to make a “subjective” assessment about the
brain health of an individual. These assessments tend to be sub-
jective because they lack a deterministic relationship between an
individual’s health status and the absolute values of the metrics
observed within MRI scans [1]. Moreover, such methods can-
not adequately account for the statistical complexities inherent
within neuroimaging datasets that capture neurodegeneration.
In particular, neurodegeneration is a characteristic of the healthy

Neurodegeneration is the progressive loss of structure or

aging process and various neurological disorders [2], exhibiting
correlated patterns across brain regions. Such statistical factors
motivate well the use of data-driven methods to characterize
neurodegeneration.

Automating or improving the analyses of brain MRI images
is anpealine for several reasons: MRI is a noninvasive nroce-



> PCA and the graph Fourier transform

» CoVariance neural networks (VNNs)

> Theory of VNNSs: Stability and transferability

> Application: Principled brain age gap prediction with VNNs
> Variants of VNNs
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Key takeaways

> VNNs offer a novel GSP-inspired perspective to PCA
addressing challenges in modern data analysis
> Principled deep learning solution for finite-data regimes
- Stability and transferability

» VNNSs address methodological/conceptual obscurities in brain age gap prediction

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



PCA and Graph Fourier Transform
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A graph filter implementation of PCA inference

> To show: PCA-based inference can be implemented with a polynomial over C

Input PCA __ Learning

—

— Output

ad Readout
— h. Gk — — Output
data transform model data Z g P

function

Conceptually equivalent implementations
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A graph filter implementation of PCA inference

> To show: PCA-based inference can be implemented with a polynomial over C

Input PCA __ Learning

—

— Output

ad Readout
— h. Gk — — Qutput
data transform model data Z g P

function

Conceptually equivalent implementations
K

> How: Follows from the graph Fourier transform analysis of ) _7xC"*
k=0
> Implications:

- Alternative implementation of PCA-based inference using polynomial over C

- But more importantly, polynomial implementation is stable, transferable

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Preliminaries: Graph

> Graph: a triplet (V,E, W)

- £ T ¢
A set of nodes V = {1, ..., m} “ e
A set of (undirected) edges E € VXV
Edge between node i and j denoted by (i, j) e

An edge function W: E — R that maps edge (i, j)to weight w;; € R

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Preliminaries: Graph

> Graph: a triplet (V,E, W)

2 £ ™ 4
A set of nodes V = {1, ..., m} “ e
A set of (undirected) edges E € VXV
Edge between node i and j denoted by (i, j) e

An edge function W: E — R that maps edge (i, j)to weight w;; € R

> Adjacency matrix representation of graph
rwij, if (Z,]) c b,

A i = <
Al 0, otherwise

\
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Preliminaries: Graph signal

> Graph signals are mappings x:V » R
—> graph signal is defined on the vertices of the graph

» Graph signal can be represented as a vector x € R™
—> x; denotes the graph signal at i-th vertex in V

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Preliminaries: Graph shift operator (GSO)

> To understand and analyze graph signal X, GSP accounts for the graph structure

> Graph structure is encoded in a graph shift operator S € R™*™

— [S];; = Ofori # jand (i,j) € E (S captures local graph structure)

(511 Si2 0 0 Sy 0\
0

e o So1 Saa Saz 0 Sy
S — 0 Sa3 S3zz3 Sza 0 0
e e -1 0 0 Sa3 Saa Sas Sue

Ss1 Ss2 0 Ssqa Ss5 O
\ 0 0 0 Se 0 S )

> Examples: adjacency matrix, Laplacian

Covariance matrix is a data-driven adjacency matrix

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Preliminaries: Graph Fourier Transform (GFT)

> Generically, eigendecomposition of GSO S = UdU 1
> GFT is the projection of graph signal on the eigenvector space U
x=U"1x
> Inverse GFT is defined as
x=UX

—> Eigenvectors U = [u4, ..., Uu,, | are the frequency basis

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



When GSO is covariance matrix...

> GFT over covariance matrix

Given eigendecomposition

GFT of X is

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



When GSO is covariance matrix...

> GFT over covariance matrix > PCA transform
Given eigendecomposition Projection of sample X on
O — VAVT principal components of C
GFT of X is
% =V'x PCA transform: % =V 'x
s N

PCA transform is GFT with

respect to the covariance graph!
N Y

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Preliminaries: Graph filter

> Graph filter H maps graph signal X to another graph signal z via linear-shift-

and-sum operation
z = H(S)x,

K
where H := h,S® + h;S* + h,82 + -+ hSK = thsk
k=0

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Graph filter on covariance matrix

> Covariance matrix forms a fully-connected graph where X = [21,...,%6
- nodes are features

- edges are covariance values

> Graph filter on covariance matrix Cis defined as

K
H(C) = > hChrx
k=0
X ~ CX ~ CQX ~ CBX
> C > C > C
lho lhl lhg hs
n n) o\ H(Ox
O, () () () '

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



CoVariance filter

A

> Analogy between H(C) and PCA

Using eigendecomposition C = VAV , it follows that

K K K
z =H(C)x = Z hi,Crx = Z thAkVTX = V(Z hkﬂk)VTX
k=0 k=0 k=0
l ' ) ]

Frequency response  PCA

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



CoVariance filter

A

> Analogy between H(C) and PCA

Using eigendecomposition VAVT , it follows that

C
K K L K )
z=H(C)x =Y nCx=3 mVA Vx= V(Z hy A )VTX
k=0 k=0 k=0

\ Y l\_"_’

Frequency response  PCA

GFT of coVariance filter output Z and PCA are equivalent

K
7= (Y mA")VTx
k=0

i-th component of Z is modulated by h(1;) = Yx_, hk/u'{

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Learning with coVariance filter versus PCA-based learning

> Learning with a coVariance filter
Input coVariance . Readout _ Inference
data filter function output
I
|
I- -------- J ------------------ . |
| l
| [
| I
| l
| [
| I
| l
| [
| I
| - - - l
. Eigenvalue, A, Ay A3, Ay, - :
: Eigenvector v, v, V3 D, Vm :
-
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Learning with coVariance filter versus PCA-based learning

> Learning with a coVariance filter
Input —, coVariance . Readout _ Inference
data filter function output
I
|
e e —————— .
| 0
| l
| [l
I ,&’-\\ I
| ,/' \\ [
| )2 \ [l
| P \\ l
| ' e '
T B T T et = N S [
| - - - 0
. Eigenvalue, A;, A, A3, 1, - :
: Eigenvector v, v, V3 D, Vm :
-
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Learning with coVariance filter versus PCA-based learning

> Learning with a coVariance filter
Input —, coVariance . Readout _ Inference
data filter function output
I
|
e ——————— e —————— -
I ]
I . [
| ) fl(.lz) :
: h(/ll,,,”’ \\\ :
I \
/ N A I
I l, ~ S - h(A‘l') I
l ) I R TR
I . A A A oA A
. Eigenvalue, A4, Ay, A3, Ay, Amo :
: Eigenvector v, v, V3 D, Vm :
3

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Learning with coVariance filter versus PCA-based learning

> Learning with a coVariance filter > PCA-based learning
Input —, coVariance = Readout _ Inference Input PCA Regression Inference
data filter function output data transform . model output
I
l I
= e e e e e e B [ ——— —— B e o o e e - o
| 1| I
| . 1| I
I _ hid) ok I
: h()ll,,,” \\\ I | [
| , Lol :
| s A\\ h(/Ll_) [ I I
ROV [l
: i) AR SRR | :
. " " . - X ! " ~ 2 -
. Eigenvalue, A4, Ay, A3, Ay, Amo : ! Eigenvalue, A4, Ay, A3, Ay, A :
: Eigenvector v, v, V3 D, Vm : : Eigenvector v, UV, V3V, (7 :
5 B
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Learning with coVariance filter versus PCA-based learning

> Learning with a coVariance filter » PCA-based learning
Input —, coVariance = Readout _ Inference Input _, PCA Regression Inference
data filter function output data transform . model  output
I
l I
= e " | pree—————————— T o o o e o .
| 1|1 |
| ~ [ I [
' _ hita) : : B2 ¢ :
| hid1)" I, 1| |
I , \\\ : I ﬁl EB :
| /s e h(A) I : Ba !
' h(43 I"T ~~~~~ | I |
l ha o TN ° : : . o o !
| : A A A A o . A A A A R
. Eigenvalue, A4, Ay, A3, Ay, A, : ! Eigenvalue, A4, Ay, A3, Ay, Am, :
: Eigenvector v, v, V3 D, Vm : : Eigenvector v, UV, V3V, VU, :
L R ——
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coVariance Neural Networks (VNNSs)
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coVariance filters as convolutional operators

> Operation Chrx performs a k-shift of signal X over graph defined by C

» Parameters {h;} are called filter taps, are scalars and learnable parameters
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CoVariance Neural Networks (VNNSs)

> coVariance filters can learn only linear representations
» To accommodate learn non-linear representations, concatenate coVariance

filter with pointwise non-linearity o (for e.g., ReLU, sigmoid, etc.)
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CoVariance Neural Networks (VNNSs)

> coVariance filters can learn only linear representations
» To accommodate learn non-linear representations, concatenate coVariance

filter with pointwise non-linearity o (for e.g., ReLU, sigmoid, etc.)

Example: A two-layer VNN

: R
j-====Data X==p VNN = Qutput ®(x;C,H)

T

K
Hi(C) =) h;CF =l of:)
k=0

t
C

L, ®(x, C; H)
ey Learning

outcome

|

|

|

|

|

|

| R =
:Layerz Hy(€) =3 hopCF =l ()
I k=0
|

|

|

|

|

|
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CoVariance Neural Networks (VNNSs)

> coVariance filters can learn only linear representations
» To accommodate learn non-linear representations, concatenate coVariance

filter with pointwise non-linearity o (for e.g., ReLU, sigmoid, etc.)

Example: A two-layer VNN

: R
j-====Data X==p VNN = Qutput ®(x;C,H)

t

A

C
> O (x; C, H) represents VNN output

T

K
Hi(C) =) h;CF =l of:)
k=0

> H is set of all filter taps

L, ®(x, C; H)
ey Learning

outcome

|

|

|

|

|

|

| R =
:Layerz Hy(€) =3 hopCF =l ()
I k=0
|

|

|

|

|

|
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VNNs outperform PCA (regression task)

Synthetic data Neuroimaging data
4.2 ! —— VNN
—+- PCA-LR
4.1 0 T [ | e PCA-rbf
4.0 .
" 10
i 30 HE— N
S 38l £ 8 S ol
3.7 L
3.6 I":.:' Eﬂ 8
S I R R PCA-LR | ;
G B PCA-rbf | -
0 200 400 600 800

0O 50 100 150 200 250 300 350

number of samples, n
€ o pies number of samples, n
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Covariance Filters and Neural Networks
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Covariance filters

A

> A covariance filter is a polynomial in the covariance matrix C
K
H(C) = > mhChx
k=0
> We train the filter coefficients hi to accomplish some task

Cx C2x
> O > C
hO hl h2
H(C)x
- " " >

N
>

Q

N
>
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CoVariance Neural Networks (VNNSs)

> A VNN is a composition of layers

> Each of which is a composition of

... a covariance filter

... with a pointwise nonlinearity

L, . (x, C; H)
Readout |—p Learning

outcome

> &(x; C, H) represents VNN output

——— e ————
<
D
N
—
=
Q
[
]~
&
=
Q
Q

> H is the set of trainable filter taps
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Covariance Filters are Implicitly Equivalent to PCA

Input —, cngriance __, Readout _ Inference Input __, PCA Regression Inference
data filter function output — —

data transform model output
———————————————————————————— M| e ———————————————
: 1] |
I . 1l l
i h(43) i B2 e I
| hd) T 111 |
I 1/’ \ I | |
: ) ’ ‘\ : [ ﬁl ﬁB :

’ AN I

: ' hi) 1) ] Pa '
I 3 I I ~~~.....~--.——. : : T e o o o o :
I . A A A A A . A A A A R
| E!genvalue, /11, /12, /13, ).4, Am, : : Elgenvalue’ /‘llr AZ) 13) Aél-' Am; :
: Eigenvector v, UV, V3 VU, (7 : : Eigenvector v, V, V3V, (7 :
L ________________________________________________________
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Covariance Filters are Implicitly Equivalent to PCA

> The difference is that covariance filters (and VNNs) do not require eigenvectors
Stability: Leading to more stable signal processing

Transferability: And the possibility of transferring trained filters across scales

———————————————————————————— | | T EE S R S S SR S S
: 1] |
I . 1] | [
I h(ﬂz) I [ ,820 I
| 2) /”.\\ [ 1 |
| h(Ag) | 1] |
I , ‘ ‘\\ : | ﬁl ﬁ3 :
Vs N |
: ' b1 1K Ba i
I 3 I I ~~~.'.'. _____ Y : I To o o o o :
, e o
. ” ” . - - 1 " s 2 5 -
y Eigenvalue, Ay, A, A3 1, A : : Eigenvalue, A1, 43, 43,44 A :
: Eigenvector 7, v, V3 D, v, || Eigenvector v, U, V3V, Dy, |
Il 1 [
L --------------------------------------------------------
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Stable Inference with VNNs
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Stability of inference with PCA and VNNs

> PCA-driven inference can be unstable
. stochastic perturbations due to

finite sample effect

> VNNs provide stable outcomes

|:> enhanced reproducibility
> avoid overfitting

Performance on regression task

1 —— VNN
—e- PCA-LR
----- PCA-rbf

11

0O 50 100 150 200 250 300 350
number of samples, n

A

C,,: estimated from n samples
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Stochastic perturbations in sample covariance matrix

» Recall: Sample covariance matrix C is estimate of true covariance matrix C

>k — )k — )T C=E[(x—p)(x—p)]

—> eigenvectors/eigenvalues V, A of C are estimates of V, A of C
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Stochastic perturbations in sample covariance matrix

» Recall: Sample covariance matrix C is estimate of true covariance matrix C

1
n—1

n

> (xi— ) — ) C=E[(x—p)(x—p)]

1=1

C=

—> eigenvectors/eigenvalues V, A of C are estimates of V, A of C

> Convergence betweenV, A andV, A [*]

IVx — Vx| =0 ( ! )

nl/Qmini;,gj |>\z — )\J‘
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Stochastic perturbations in sample covariance matrix

» Recall: Sample covariance matrix C is estimate of true covariance matrix C

LS -k - )T C=R(x— p)(x— )"

n—1 4
1=1

C=

—> eigenvectors/eigenvalues V, A of C are estimates of V, A of C

> Convergence betweenV, A andV, A [*]

IVx — Vx| =0 ( ! )

n1/2milfl7;7gj ’)\z — )\]‘

4 )

—>| Unstable PCA transform when eigenvalues of covariance are close

- J
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Stability of coVariance filter

» How to gauge stability?

x— H(C) .z = H(C)x

—> Output Z must be robust to number of samples n used to estimate C
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Stability of coVariance filter

» How to gauge stability?

x— H(C) .z = H(C)x

—> Output Z must be robust to number of samples n used to estimate C

> Compare filter outputs for sample and true covariance matrix

x —  H(C) —~z=H(C)x x— H(C) -z = H(C)x

—> metric of interest: IH(C) - H(C)|

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Stability of coVariance filter

X — H(C) .z=H(Cx x— H(C) .z = H(C)x

Stability result

o) mo o

coVariance filter output is
asymptotically consistent
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Stability of coVariance filter

X — H(C) —z=H(C)x
Stability result
[H(©) - HO) =0 (=)
Assumption.

Frequency response of filter H(C) satisfies

(A - ()| < QP!

X —> H(C) -z = H(C)x

coVariance filter output is

— asymptotically consistent

coVariance filter sacrifices
— discriminability between close
eigenvalues for stability

Sihag, Mateos, Isufi, Ribeiro
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Recall: Learning with coVariance filter versus PCA-based learning

> Learning with a coVariance filter > PCA-based learning
Input —, coVe';lriance _, Readout  Inference Input _,  PCA Regression Inference
data filter function output data transform model output
|
[ I
e m————— Y e e | e ——— T o =
i 11 ]
i . 111 [
| - hizz) : | By o i
: h(/ll,,/', \\\ | i |
I ) : | By B3 :
: ’ h(A N P.M‘*) 111 ‘ Ba [
i ’ I | B S . : I FPRRD -
I . A A PR ~ : A A 5 a2 A
1 Eigenvalue, A, Ay, A3, Ay, Amo : : Eigenvalue, A;, Ay, Az, Ay, Amo :
: Eigenvector 9, ¥, D3 D, V., : y Eigenvector v, v, V3V, VUi :
e e e — — — —————————_——_——_ L o o e e e e e
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Why is coVariance filter more stable than PCA?

> Learning with a coVariance filter > PCA-based learning
Input —, coVe';lriance _, Readout  Inference Input _,  PCA Regression Inference
data filter function output data transform model output
|
[ |
e m————— Y e e | e ——— T o =
I 111 [
I 111 [
I 11 [
[ ,r”-\\ : [ :
| // \\ | I ﬁ |
0 /', \ l : ? ﬁ I
l /’ RN - h(4 4
[ h(ds)] T~(-.4.). 1 ] |
: ———— N — |
1 Eigenvalue, A3, ,14, : ! Eigenvalue, A3, Ag, :
: Eigenvector Vs D, : : Eigenvector D3 D, :
e e e e . . — — — e ————_———————_—— ] L o o o o o o o e e o o o o o o o o o o o o o
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Why is coVariance filter more stable than PCA?

> Learning with a coVariance filter

Input —, coVariance Readout _ Inference
data filter function output
]
[
--------- J------------------
[
]
]
I e e
[ Rl \\
I ,l, \
| /’ \‘\
I / RN (A3)
2 Sp-- 13
: h(M)I T _______________
[ Ei l A
: igenvalue, L4, A3,
| Eigenvector v, D3
e

> PCA-based learning

Input __, PCA Regression Inference
—_— —
data transform model output
i
o e T o o e e e E
: Overfitting on the ordering of I
[ eigenvalues is source of instability |
l
| s .
I B3 :
[
I Ba I
I I I
[ - l
: Figenvalue, Aa, A3, :
i Eigenvector VU, Vs [
L o e o o e e . . i — . — — — — — — —— — — — — — —— — — I
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Stability of VNNs

v

> VNNSs inherit the stability from coVariance filters L TRTN LS
- Stability bound depends on the bound for filters = =
R 1 L x5 = o(x; &, 1)
HH(C) - H(C)H — 0 ( . ) = ay,
n —¢

- For a VNN with L layers and F filters in parallel,
H(I)(X, C;H) — d(x, C;H)H < LFt=1a,

- Stability bound increases with number of layers and

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Stability of VNNs: Experiments

> Regression task

> Comparison against PCA-regression

Data: cortical thickness dataset (m =

» Metric: MAE (mean absolute error)

—— VNN
—+- PCA-LR
----- PCA-rbf

0 50 100 150 200 250 00 3[R0

Cortical thickness

VNN —— Estimate of age
data

104) from (n = 341) human subjects

VNN: coVariance Neural Network
PCA-LR: PCA-regression with linear kernel
PCA-rbf: PCA regression with rbf kernel

VNN outperforms PCA and is more stable
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Transferability of VNNSs
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Empirical evidence of transferability across multiscale data

> Transferability across multiscale datasets

- Multiscale datasets capture same phenomenon at different scales

VNN —— Estimate of age

Transferability across datasets with different number of features

Training 100-feature dataset | 300-feature dataset

‘ 5.39 + 0.084 5.5+ 0.101
100-feature dataset
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Transferability

> Learning models could generalize to compatible datasets

> compatible: different dimensionalities and describing the same domain
Remote sensing

Space-Borne
A7 (Low-Resolution)

\4
Air-Borne

(Medium-Resolution)

Ground-Based
(High-Resolution)

Brain imaging data
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Transferability

> Learning models could generalize to compatible datasets

> compatible: different dimensionalities and describing the same domain

D DD

Brain imaging data

Remote sensing

Space-Borne
A7 (Low-Resolution)

\!
Air-Borne

(Medium-Resolution)

Ground-Based
(High-Resolution)

> Motivation: novel metric for generalizability,
managing high dimensional data...
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Transferability

> Most statistical approaches, including PCA, operate within the dimensionality
|:> seamless transference not possible across different dimensionalities
> This section: How do VNNs transfer?

When is transference successful?

Space-Borne
g (Low-Resolution)

\\l
Air-Borne
(Medium-Resolution)

Ground-Based
(High-Resolution)
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coVariance filters are scale-free models

‘ mq-dimensional data processing mz-dimensional data processing ‘

K K

L ,

Xml kzo hkalxrm ' H(le)xml .Xm2 E— Z hkC?’?,I2xm2—>
= k=0

T T R T
e T
BT ARTAES g
i AV ants 3 70 i
i b’ )
; b arh e
g i
N Ser ¢ N

BB mi

I RS ol
= :-g"
z oN wk
Fa A AT

learnable parameters

> A coVariance filter H(-)with scalar filter taps {h;} can process dataset (covariance matrix)
of any arbitrary dimensionality: scale-free model
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VNNs as scale-free models

‘ m1-dimensional data processing mo-dimensional data processing ‘

Xml —_— VNN — (D(Xm17 le"}-[> _XTI’LQ —_— VNN

learnable parameters

How to compare ®(x,,,,; Cpn,, H) and ®(x,,,; Cyy, H)?
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VNNs as scale-free models

‘ mi-dimensional data processing data processing in continuous limit ‘

Xmy; —  UNN  — &(x,,,;Cpny, H) Y — NN — P(y; W, H)

. R

0'%.0 02 04 06 08 1.0

learnable parameters _ o
Continuous limit of

covariance matrices

asm — oo
How to compare ®(x,,,,; Cpn,, H) and ®(yx; W, H)?
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Graphons as continuous limits

> Graphs can have limit objects with uncountable number of nodes

> Example: Stochastic block models

07
06

E =05
0.4
03
0

Balanced SBM Unbalanced SBM
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Graphons as continuous limits

> Graphon: A graphon is a symmetric, bounded measurable function
Node labels are graphon arguments u € [0,1]
edge weights are graphon values W(u,v) = W(v, u)
W:[0,1]° =R
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Graphons as continuous limits

> Graphon: A graphon is a symmetric, bounded measurable function
- Node labels are graphon arguments u € [0,1]
- edge weights are graphon values W(u,v) = W(v, u)
W:[0,1]° =R

> Transferability when covariance matrix is part of some converging sequence

Symmetric continuous
function (graphon) W

1.0
0.8 {8
0.6
0.4

0.2

o'%.O 02 04 06 08 1.0
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Redefining VNNs in continuous domain

Data x,,, (m1 features)

- O(x,,,;Coy, H)

Covariance matrix C,,,
(size my1 X my) H
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Redefining VNNs in continuous domain

Data x,,, (m; features)

Covariance matrix C,,,
(size mq X ml) H

(0,0)_0.p1) 0.pm-1)(0,1)

| | 1 I 1 1 11
(pr.0) PR b b b b o b e
[
(p2a0)

1 1
=TT rTrTTTTr
(Pr—1.0) o o e e ]
[ I B B B

(1,0) (1,1)
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Redefining VNNs in continuous domain

Data x,,, (m; features)

Representation of discrete VNN
= P output on interval [0,1]
0 P1 P2 * Pm—1 9

T Ym
: : ;52;;_____---" V$““ --4’>éD()anl;(37n171}i) Illllll’»

Covariance matrix C,,, 1
(size my x mq) H
(0,0) Lo.01) (0.p-1)(0, 1)

I LI
(p1,0) bbb b
(
(p2a0)

mq partitions

1 1
=TT rTrTTTTr
(Pr—1.0) o o e e ]
[ I B B B

(1,0) (1,1)
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Problem formulation for transferability

Representation of discrete VNN
output on interval [0,1]

Data x,,,, (mi features)

Covariance matrix C,,,
(size my X ml) H

o 1

— VNN _’(I)(y)“W’H) EETRRRRNY 2

O'%.O 0.2 0.4 06 0:8‘ 1.0 1 O 1
Covariance matrix limit W

(defined on [0,1]°)  Continuous data limit

0.6

0.4

0.2
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Problem formulation for transferability

Representation of discrete VNN
output on interval [0,1]

Data x,,,, (mi features)

Covariance matrix C,,,
(size my X ml) H

o 1

— VNN _’(I)(y)“W’H) EETRRRRNY 2

O'%.O 0.2 0.4 06 0:8‘ 1.0 1 O 1
Covariance matrix limit W

(defined on [0,1]°)  Continuous data limit

0.6

0.4

0.2

Find 9, such that, ||y, —yllo < ¥
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VNNs are provably transferable

Y I
mq partitions 0 1

(I)(Xml; Cny, 7—[) Yx——— VNN

| ) L

learnable parameters

0'%.0 0.2 04 06 08 1.0

Transferability bound*

1
s — yll o O (mgg/Q_l) for ¢ € (2/3,1]

1
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VNNs are provably transferable

ma paFtitions

(I)(Xml; Cny, 7—[) Yx——— VNN

g Ly

learnable parameters

0'%.0 0.2 04 06 08 1.0

- "
VBTS2 57 | e *Assumption: data is a discretization of a common
continuous model Symmetric continuous
1 function W
||ym1 o y” x O 3¢/2—1 o]
ml 0.6

0.4

0.2

0'9).0 0.2 04 06 08 1.0
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VNNs are provably transferable

) — I 1 —
mq paFtltlons meo partitions

D (x5 Cony s H) Yx—— VUNN —— O(x,,,;Cpyy H)

| y | L.

learnable parameters

™Mo

Transferability bound

1 1
Hyml o ymz” X O( 3¢/2—1 + 3</2_1) Y for C < (2/37 1]
my ms
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Experiments

Objective: Brain age gap prediction in HC (healthy) and AD+ (Alzheimer’s) cohorts from
VNNSs trained on 100-feature dataset

@ @ @ @ @ @ * ROIs contributing to elevated

100 parcels 300 parcels 500 parcels brain age gap in AD+ across

@ @ @ @ @ @ different resolutions

 Brain age gap is elevated in
FTDC100* FTDC300 FTDC500 AD+ w.rt HC cohort in 100-
feature dataset

* Results on brain age gap
retained after transferring
VNN to 300 and 500-feature
datasets

A-Age

HC AD+ h HC AD+
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Principled brain age gap prediction with VNNs
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Brain age gap

> Individual rate of “aging” is different from chronological rate of aging
* Driven by environment, genetics, neurodegeneration

> Brain age provides a biological estimate brain age, derived from neuroimaging

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Brain age gap

> Individual rate of “aging” is different from chronological rate of aging
* Driven by environment, genetics, neurodegeneration
> Brain age provides a biological estimate brain age, derived from neuroimaging

> The brain age gap is the deviation between brain age and chronological age

Brain age - individual risks for neurological,
gap Brain age gap < neuropsychiatric
and neurodegenerative diseases

B Healthy m Neurodegeneration
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Neurodegeneration (in terms of cortical atrophy)

> Neurodegeneration is accelerated decline of structure or function of the brain

> Cortical atrophy: reduction in cortical thickness/volume/area

X = [T1,..., Tm]

Preprocessing | HEN |
(e.g., Freesurfer) x; is cortical
_ a8 . thickness for
‘ brain region i

MRI scan Cortical thickness features
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Neuroimaging Data: Basics

> Data sample corresponds to measurement associated with
X = [T1,...,Tm]

brain (cortical) surface T EEE

> Brain surface is divided according to brain atlases

|:> datasets may have distinct dimensionalities

Anatomic features

> Multi-resolution brain atlas discretizes brain surface at multiple resolutions

(for e.g., Schaefer’s atlas has resolutions 100-1000)

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Case study (Neurodegeneration)

» Data: cortical thickness from 3 cohorts ~ ** - o
.+ HC (healthy) é o
- AD (Alzheimer’s disease) §22 o | g
> Larger cortical atrophy is feature of AD He n(ﬂ?;' o e 7%55 e
» MCl is precursor to AD @ ® @ ®
:> shows intermediate cortical '
atrophy between HC and AD /" @ @ @
o . (d)
> Aging also leads to cortical atrophy —

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Brain age gap evaluation using ML

Step 1. Train ML model to predict chronological age for healthy controls from cortical thickness features

Least squares line

perfect fit
line ~~ " "obtained on outputs of
ML model
)
a0
Neuroimaging data f . . o
euroimaging da a. rom ML Model 8 /.-
healthy population i ez
O
D
o
True age
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Brain age gap evaluation using ML

Step 1. Train ML model to predict chronological age for healthy controls from cortical thickness features

Least squares line

perfect fit
line ~~ " "obtained on outputs of
ML model
O
o0
Neuroimaging data f R . o
euroimaging da a. rom ML Model 8 /.-
healthy population i ez
e,
o
| -
o
True age

Step 2. Linear regression-based age-bias correct for outputs of ML model

Step 3. Obtain brain age gap for healthy controls and individuals with neurodegenerative condition.
m Healthy m Neurodegeneration
Brain age gap =

Data from — ML Model — Age-blgs -p Bias-corrected ML model =% Brain age
all cohorts correction
output —True age gap

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Brain age gap prediction is a transfer learning problem

> Train ML model on a large dataset
Pre-training

Neuroimaging data from .
healthy population ——> MLModel — predicted age

> Apply the pre-trained ML model on a target dataset

m Healthy m® Neurodegeneration
Data from - -

all cohorts ML Model —> Brain age

gap

> Brain age gap is the residual of the model

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Brain age gap prediction is a transfer learning problem

> Some observations about a meaningful brain age gap

- We expect model performance to degrade in target population
v Degradation in performance (residuals) must be in a specific direction

v Degradation in performance (residuals) « disease severity/status

B Healthy m Neurodegeneration
Data from - -

all cohorts ML Model =—>  Brain age

gap

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Choice of learning parametrization

> Choice of ML model dictates how data is leveraged to gauge brain age gap

> Prevalent approaches focus on achieving perfect pre-training performance

- Performance-driven approaches

> Performance-driven approaches do not guarantee meaningful’ brain age gap

m Healthy m Neurodegeneration
Data from - -

all cohorts ML Model —> Brain age

gap
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Choice of learning parametrization

> Neural networks are prevalent in performance-driven approaches

> A Neural Network may not be interpretable and prone to overfitting

I:> methodological obscurity in brain age gap prediction pipeline

= HC = Neurodegeneration

_, Age  _, AgeBias __Brain-Age
ML Model Estimate Yy Correction — Estimate — A-age . .
yB

150
Performance-Driven 2w
Approach: Exclusive  E®
Focus on Achieving Wi 70

Lack of Just\(ifications that Tie
; Qoo A Tight Fit on the Age of HC Group
Near-Perfect Fit on Lso| With Meaningful Brain Age Gap

Healthy Cohort HC 5 6 70 8 90 100 . .
Chronological Age T in Neurodegeneration
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Choice of learning parametrization

> Neural networks are prevalent in performance-driven approaches

> A Neural Network may not be interpretable and prone to overfitting

I:> methodological obscurity in brain age gap prediction pipeline

Performance in pre-training does not dictate meaningful residuals
in target population

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



A principled approach to brain age gap prediction

> Focus on residuals of the ML model, not prediction performance
> Qualitative evaluation during pre-training
what does the model learn during pre-training on healthy population?
> Interpretability/explainability:
what’s driving elevated brain age gap (residuals) in neurodegeneration?

> Generalizability to diverse target populations

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



VNNSs provide an anatomically interpretable and explainable brain age gap

B HC m Neurodegeneration

q
. — Age-bias Brain age gap =
Cortical —yp VNN 2 3 — —>  Bias-corrected VNN — Brain age -
#
#

i correction
thickness output - True age &ap
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VNNSs provide an anatomically interpretable and explainable brain age gap

B HC m Neurodegeneration

i correction
thickness output - True age &ap

A A

q
. — Age-bias Brain age gap = _
Cortical —yp VNN 2 3 — g —>  Bias-corrected VNN — Brain age -
#
#

B Healthy ® Neurodegeneration

Regional -
Residual -

regional residuals in neurodegeneration brain age gap in neurodegeneration

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



VNNSs provide an anatomically interpretable and explainable brain age gap

B HC m Neurodegeneration

i correction
thickness output - True age &ap

A A

q
. — Age-bias Brain age gap = _
Cortical —yp VNN 2 3 — g —>  Bias-corrected VNN — Brain age -
#
#

B Healthy ® Neurodegeneration

e ... ;!
o o

regional residuals in neurodegeneration brain age gap in neurodegeneration

/ Eigenygctor 1 \

ey
= e
3

o ‘ LS
o ‘ 235
[} 2

\ . HC Neuro;iegeneration /
Principal components
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Network neuroscience

> Modeling brain as a network (connectomes)

Anatomical covariance matrix
(structural connectome) Functional connectome

> Motivation
- Significant redundancies in brain structural/functional features

. Brain structure/function is compromised in nheurodegeneration

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Covariance matrices in network neuroscience

> Covariance matrices appear commonly in network neuroscience

Anatomical covariance matrix Functional connectome

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Covariance matrices in network neuroscience

> Covariance matrices appear commonly in network neuroscience

Anatomical covariance matrix Functional connectome

> Inference over covariance matrices in network neuroscience

Traditional statistical approaches (for e.g., PCA)

o Interpretable, suitable for low data regimes
- Deep learning approaches (for e.g., GNNs)
o Enhanced expressivity, improved performance

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



VNNs are well suited for neuroimaging data analysis

> Properties of VNNs make them appealing for neuroimaging data analysis

Connections with PCA :> transparent outcomes by leveraging spectrum of
covariance matrix

Stability |:> reproducible outcomes in limited data settings

Transferability |:> enhanced generalizability and robustness to choice
of brain atlases

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Anatomical covariance matrix as a graph

> Covariance matrix is a data-driven graph

X = [x1,...,26]"

Anatomical covariance matrix

Covariance matrix as a fully-connected graph (estimated from cortical features)

n

1 n
A A T A
i i ; W = - E 0
E (x; — 1) (x; — f1) here 1 X

1=1 =1
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VNN vs PCA on age prediction task

» Regression task Cortical thickness

VNN —— Estimate of age

data
» Comparison against PCA-regression
Data: cortical thickness dataset
» Metric: MAE (mean absolute error)
IRRVAN VNN: coVariance Neural Network

—+- PCA-LR
----- PCA-rbf

PCA-LR: PCA-regression with linear kernel

PCA-rbf: PCA regression with rbf kernel

VNN outperforms PCA and is more stable

0 50 100 150 200 250 00 3[R0

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



VNNSs provide an anatomically interpretable and explainable brain age gap

Cortical —, VNN

Y. —» Predicted age
thickness

HH

1
R e

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



VNNSs provide an anatomically interpretable and explainable brain age gap

Cortical —, VNN

Y. —» Predicted age
thickness

HH

Unweighted readout function
(keeps track of how residuals change in target population)

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



VNNSs provide an anatomically interpretable and explainable brain age gap

Cortical —, VNN

Y. —» Predicted age
thickness

HH

iR E B Healthy ® Neurodegeneration

:.ml‘-'“m’m

e e T [ @ @ —_—
Regional -
Residual

Brain regions with elevated
regional residuals in neurodegeneration
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VNNSs provide an anatomically interpretable and explainable brain age gap

B HC m Neurodegeneration

i correction
thickness output - True age &ap

A A

q
. — Age-bias Brain age gap = _
Cortical —yp VNN 2 3 — g —>  Bias-corrected VNN — Brain age -
#
#

B Healthy ® Neurodegeneration

Regional -
Residual -

regional residuals in neurodegeneration brain age gap in neurodegeneration
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Experiments

Participants from OASIS-3 dataset, 148 cortical thickness features per individual

>
Number 611 194 .
HC group: cognitively normal
Age 68.38 (7.62) 74.72 (7.02) : :
n - oy ’ AD group: AD diagnosis
ex (m/h) 007551 190754 CDR: Clinical dementia rating
CDR sum of boxes 0 3.45 (1.74)
> Brain age gap is elevated in AD group and correlated with CDR sum of boxes

p = 0.474 (p-value = 2.88 x 10712)

OASIS-3 (DKT atlas)

o @

Anatomical interpretability

w - w o o~ ==}
n s - s s f

[N
[ ]

CDR Sum of Boxes

Learning with Covariance Matrices: Foundations and Applications
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Experiments

» VNN distinctly exploits eigenvectors in AD and HC groups

Eigenvector 1 Eigenvector 2
0.6 ' - 0.32; ' '
B aeg Pl 7 i =
=N ik ST o
0030 . B So28| | H  %
Q054 I A Q e e
" e LI = 0.26] e g
e 0.52 :% o e N oy
o= L. ) L c 0.24 "?
= 05 i L —
. | 0:22 | L
HC AD HC AD

I:> explains anatomical interpretability of brain age gap in AD
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Experiments

> Whole brain cortical thickness dataset for Frontotemporal Dementia (FTD)

e Healthy controls (HC, n =114, age = 64.51 + 6.51 years, 65 females)
* FTD diagnosis (FTD, n =119, age = 64.72 £ 6.78 years, 47 females)

> 68 cortical thickness features (Desikan-Killiany atlas)

Brain age gap distributions Anatomic interpretability Explaining anatomic interpretability
Eigenvector 1 Eigenvector 4
- @ @ 5 80l & -
S 0.3 P > 0.45 e R
10.0 ° - ° g3 s
2 . o goan g | i
& 8025 _sf. ‘,J:" 5043 4 o
S 5.0 = oe | 042 2 [
h'- | i (] Tk — R
c 021 ¢ X2 c 0.41 B
0.0 = #Z T £ 04 5 !
015 v e 0558 1
-5.0 HC FTD HC FTD

F-value [ So—
(I-—I'D > HC) 0 25 50 75 100
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VNNs are provably transferable

) — I 1 —
mq paFtltlons meo partitions

D (x5 Cony s H) Yx—— VUNN —— O(x,,,;Cpyy H)

| y | L.

learnable parameters

™Mo

Transferability bound

1 1
Hyml o ymz” X O( 3¢/2—1 + 3</2_1) Y for C < (2/37 1]
my ms
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Recap: Transferability of VNNs cross-validates brain age gap in multi-resolution setting

Objective: Brain age gap prediction in HC (healthy) and AD+ (Alzheimer’s) cohorts from
VNNSs trained on 100-feature dataset

DO OO0 &
= : * ROIs contributing to elevated

100 parcels 300 parcels 500 parcels brain age gap in AD+ across
@ @ ii @ @ @ different resolutions

 Brain age gap is elevated in
AD+ w.r.t HC cohort in 100-
feature dataset

FTDC100* FTDC300 FTDC500

* Results on brain age gap
retained after transferring
VNN to 300 and 500-feature
datasets

e L
HC AD+ ' HC AD+ AD+
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VNNs as pre-trained models...

> Uncovering disease heterogeneity with VNNs as pre-trained models

Label estimate
Inputs

)= N
< _

Cortical Thickness VNN-informed Clinical heterogeneity
Features features

> VNNs offer more significant clinical stratification than raw anatomical features

Raw CT features VNN-informed features
AD AD
14.0 o 14.01 ——
o, s . VNN enhances the
fon[ S % cee 2 [ clinical relevance of
ol & 2l ol A ' anatomical features

cluster 1 cluster 2 cluster 1 cluster 2
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Alignment of covariance with learning:
An NTK perspective

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Are covariance matrices suitable for a learning task?

> Covariance matrices add a meaningful inductive bias to neural nets
Covariance matrix captures the (linear) structure

> VNNSs provide the bridge between PCA and GNNs

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Are covariance matrices suitable for a learning task?

> Covariance matrices add a meaningful inductive bias to neural nets
Covariance matrix captures the (linear) structure

> VNNSs provide the bridge between PCA and GNNs

» Can we quantify the suitability of covariance to learning objective?

Is performance good?

good generalization?
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Are covariance matrices suitable for a learning task?

> Covariance matrices add a meaningful inductive bias to neural nets
Covariance matrix captures the (linear) structure

> VNNSs provide the bridge between PCA and GNNs

» Can we quantify the suitability of covariance to learning objective?

Is performance good?

good generalization?

> Neural tangent kernels (NTKs)-driven insights for VNNs

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Neural tangent kernels (NTK)

> NTKs describe the evolution of neural nets during training by gradient descent

> Example:

Predict y from x using Input data —— . Output
model m
x € R™ y eR

ML model f (parameters h) fLRM o RP s R
: X RP —

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Neural tangent kernels (NTK)

> NTKs describe the evolution of neural nets during training by gradient descent

> Example:

o - Output

Predict y from x using Input data ——
model m
y €R

ML model f (parameters h) x € RY

f:R™ xRP — R™
Loss: £ = mean squared error (MSE)

= ) llyi —f(xi,h))|

1€Data

» Optimize parameters h using gradient descent

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Neural tangent kernels (NTK)

ML

Input data ——
model

: : —— Output
» Evolution of gradient descent utpu

f(x, hFV) = £(x, b)) — 1O (x. b)) - (f(x, h") —y)
n : learning rate O(x,h") : NTK matrix
O(x;,x;) = Vnf(x,h)"'Vuf(x, h)

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Neural tangent kernels (NTK)

ML

Input data ——
model

: : —— Output
» Evolution of gradient descent utpu

f(x, hFV) = £(x, b)) — 1O (x. b)) - (f(x, h") —y)
n : learning rate O(x,h") : NTK matrix
O(x;,x;) = Vnf(x,h)"'Vuf(x, h)

> For neural networks with infinite width, NTK matrix is constant w.r.t h

O(x,h'")) - O(x)

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Neural tangent kernels (NTK)

> Convergence of gradient descent dictated by alignment between NTK and data

£ (x, h(t)) — yH% x A where A= yT@y
Larger A |:> faster convergence

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Neural tangent kernels (NTK)

> Convergence of gradient descent dictated by alignment between NTK and data

If(x,h) —y||2 o« —A4 where A=y'Oy

Larger A |:> faster convergence
Example

4100

4000 - < A2 < AS <A4

3900 -

Larger alignment implies
better convergence/ loss

MSE loss

00 25 50 75 100 125 150 17.5
step number of mini-batch Gradient Descent
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NTK for covariance filter

» For a covariance filter H(C

C3x

h3
H(C)x

K
. NTKis © — Z CrkxxTCF

k=0

(+

Sihag, Mateos, Isufi, Ribeiro
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Alignment for covariance filter

> ForacovarlancefllterH E hka’ $ © L : i : i
: ® ® O—=

K
NTKis © — Z CrkxxTCk
k=0

I:> convergence of learning with covariance filter is dictated by

K
T (Z CkXXTék> y
k=0

\ Alignment between x, C and y /

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Data-driven graph by optimizing alighment

> Treating alignment as an optimization objective

Goal: find the optimal graph shift operator

S* = max A(S)

= maxy (Z SkFxx'S )

> Find S that maximizes
K

> (y'Sx)?

k=0

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Data-driven graph by optimizing alighment

> Treating alignment as an optimization objective

Goal: find the optimal graph shift operator

S* = max A(S)

= maxy (Z SkFxx'S )

I:> Find S that maximizes Correlation between

I D )
- .  Graph shift operator S
Z(Y Sx) * InputXx
\ S J * Outputy

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Data-driven covariance graph by optimizing alignment

> Cross-covariance graph optimizes alignment

1
S* = §(XyT +yx')

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Data-driven covariance graph by optimizing alighnment

> Cross-covariance graph optimizes alignment

§ 1
ST =5 y' +yx')
> Numerical results

. Time series forecasting: predicting next time step

Cxx_GraphFilter
—}— Cxy_GraphFilter
Cxx_twolayer_ GNN

3300 -

3200 -
—f— Cxy_twolayer GNN

\\ * Cross-covariance achieves better loss

3100 -

0
0
2 3000
w

wn
= 2900 -

e GNN with cross-covariance

s Ty outperforms VNN

00 25 50 75 100 125 150 17.5
step number of mini-batch Gradient Descent

2800 -

2700 -
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Variants of VNNs

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Are VNNs enough??

> Limitations of VNNs
- Sample covariance could be poor quality in low data, high dimensionality
setting
- High computational cost (quadratic in size for dense covariance)
- No considerations of temporal, evolving data

« Prone to undesired bias within the data

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Low data, high dimensional settings

> Sample covariance matrix is dense
—> hoisy entries in low data, high dimensional settings

—> computationally inefficient VNNs

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Low data, high dimensional settings

> Sample covariance matrix is dense
—> hoisy entries in low data, high dimensional settings

—> computationally inefficient VNNs

> Solution: sparsify the sample covariance matrix
. |f true covariance is sparse:
o Improve estimation quality

o Common in real world
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Low data, high dimensional settings

> Sample covariance matrix is dense
—> hoisy entries in low data, high dimensional settings

—> computationally inefficient VNNs

> Solution: sparsify the sample covariance matrix
. If true covariance is sparse: - For generic covariance:
o Improve estimation quality o Improve computational efficiency

o Common in real world

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



SIEICERNNE

> Sparse VNNSs: sparsify the covariance matrix with thresholding techniques

Sample covariance Sparsified covariance

Data x =+ SVNN = Qutput ®(x; C,H)

t
—> sparsified C
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SIEICERNNE

> Sparse VNNSs: sparsify the covariance matrix with thresholding techniques

Sample covariance Sparsified covariance

Data x =+ SVNN = Qutput ®(x; C,H)

t
—> sparsified C

- What thresholding techniques?

- Are sparse VNNs stable?

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Hard thresholding

> Definition
ﬁ(C)w = éij if ‘6’63‘ 2 T/\/ﬁ, 0 otherwise

Empirical covariance = Hard-thr covariance

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Hard thresholding

> Definition

77(@)@] = éij if ‘ézj‘ 2 T/\/ﬁ, 0 otherwise

> Stability bound

[H(Cun) - HO)| = O (5

co: number of non-zero elements in Gy,

Empirical covariance

nl/2

Hard-thr covariance

Sihag, Mateos, Isufi, Ribeiro
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Hard thresholding

> Definition
ﬁ(C)w = éij if ‘ézj‘ Z T/\/ﬁ, 0 otherwise

Empirical covariance

> Stability bound

[H(Cun) - HO)| = O (5

nl/2

co: number of non-zero elements in Gy,

> Stability bound for S-VNNs is tighter than dense VNNs

Hard-thr covariance
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Soft thresholding

> Definition
U(C)Z] — éij — sign(éij)T/n if ‘é@]‘ Z T/\/ﬁ, 0 otherwise

Empirical covariance  Soft-thr covariance

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Soft thresholding

> Definition
U(é)w — éf,;j — sign(éij)T/n if ‘éw‘ Z T/\/ﬁ, 0 otherwise

Empirical covariance  Soft-thr covariance

> Stability bound

[H(Cun) ~ H(O)| = O (-773)

nl/2

co: number of non-zero elements in Gy,

> Stability bound for S-VNNs is tighter than dense VNNs

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Sparse VNNs: Numerical results

> Train VNNs/PCA on one covariance and test on another covariance estimated
from less samples

£
5 00 el Tl AT Results
2 N D A ig:;g;;; * S-VNN (both soft and hard thresholding)
= A B
Lo ﬁjiﬁ f% bl Ve i M;Wgw outperform PCA and dense VNNs
DU REXE o 1 X T VK
3 vy
%
Lo * VNNs more stable than PCA
0 200 400 600 800
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Sparse VNNs: Numerical results

> Classification task on real data

> Datasets

- Brain recordings: Epilepsy and CNI — classify patient condition

- Human action recognition: MHEALTH and Realdisp — classify action

Sihag, Mateos, Isufi, Ribeiro

@ Hthr
4 Sthr A\\ i 0.61
A~ RCV g |
v oAV
% Dense 0.4/
¥
| | 0.2
96 98 100
Accuracy

”* %
»® 1.5‘
+ 601 A
ik o ¢4 */
[/ 1.0 N A 407 Lo
et to o
Vi - 20 ‘e
Y 4 |
WE e —
50 B5) 60 85 90 95 60 70
Accuracy Accuracy Accuracy
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Sparse VNNs: Numerical results

> Classification task on real data
> Datasets
- Brain recordings: Epilepsy and CNI — classify patient condition

- Human action recognition: MHEALTH and Realdisp — classify action

® 2
o @ Helr L) g
Y e s A0S 0.6, "+ N 0 « A
8 ; —A— RCV o g/ s ° S T/
201w Aoy . N/ i
g Sk { ] 1.0 A 40 Lo
g % Dense VAR 0.44 ‘ ’ A ‘ \ Q’ ® ,"
¥ A 20( ¢e A
v Y 4 | | —V
R E— , 0.24 _— , 05 ! s ! ! | — ¥ — |
96 98 100 50 B5) 60 85 90 95 60 70
Accuracy Accuracy Accuracy Accuracy

> S-VNNs are faster and achieve better performance than dense VNNs
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Limitations of VNNs -2

: : 31
> Datasets may contain harmful biases B Crow !
21 I Group 2
- For e.g., under-represented groups | M- Fair
- Biased (unfair) performance 01

- Fair PCA might be unstable
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Limitations of VNNs -2

3_

> Datasets may contain harmful biases B Crow !
21 I Group 2
- For e.g., under-represented groups | M- Fair
- Biased (unfair) performance 01

- Fair PCA might be unstable

> Fair VNNs (F-VNNs) = 0 5

- Fairness: parity in performance across groups within data
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Limitations of VNNs -2

3_

> Datasets may contain harmful biases B Crow !
21 I Group 2
- For e.g., under-represented groups | M- Fair
- Biased (unfair) performance 01

- Fair PCA might be unstable

> Fair VNNs (F-VNNs) - ; 5
- Fairness: parity in performance across groups within data
-  How to make VNNs fair?

« Are Fair VNNs stable?
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Fair covariance estimates

> Balanced covariance

For two groups g and h,

AN A A

ébal = Oéé -+ (1 — Oz)(éh — Cg) = CkgCg + o, Cy,

[ [ 3_
> Debiased covariance G
A . - . 21 I Group 2
Cdeb _ X (Im _|_ 6ZZ )— X/n N B Fair

X: data matrix
Z:: groups of samples
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Bias-mitigation penalty

> F-VNNSs are trained with a loss penalty that encourages fairness

min yL(X,y,®) + ({1 —7)R(X,y,2z,P)

L: task-specific loss (for e.g., cross-entropy, MAE)

R: bias penality (for e.g., performance difference across groups)

v: balancing term
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Stability of F-VNNs

> Fair covariance estimates
. Cyeb and Cpal are subject to covariance estimation errors
- PCA with fair covariance estimates (Fair PCA) may be unstable

—> biased treatment
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Stability of F-VNNs

> Fair covariance estimates
édeb and ébal are subject to covariance estimation errors
PCA with fair covariance estimates (Fair PCA) may be unstable
—> biased treatment
> F-VNNs are stable

1 1
Stability of F-VNNs with balanced covariance « O (1—/2) + O (—1/2>
Ng np,

1
Stability of F-VNNs with debiased covariance o O (—)
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Numerical results

> Stability:
« Train on unbiased dataset

- During test, replace covariance with unbalanced/fair version
-  Compare PCA+SVM with VNNs

—é&—Lin. PCA, C —%—RBFPCA,C —e—FVNN, C
L PO, G RBF PCA, Cy.; FVNN, Cpal

Error

| x | | i i | l 1 | =,
0 100 200 300 400 500 0 100 200 300 400 500

(a) Minority class samples (b) Minority class samples
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Numerical results

> Stability:
« Train on unbiased dataset

- During test, replace covariance with unbalanced/fair version
-  Compare PCA+SVM with VNNs

—é&—Lin. PCA, C —%—RBFPCA,C —e—FVNN, C

Lin. PCA, Cy RBF PCA, Cy,. FVNN, Chpa
| T T
SN, s, F-VNNs are more stable
B | F-VNNs achieve less bias
0 100 200 300 400 500 w20 w0 awo s F-VNNS outpe rform PCA
(a) Minority class samples (b) Minority class samples
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Numerical results

> Real world datasets

Dataset

Description

Task

Sensitive attribute

German credit (right)

Parkinson (left)
LSAC (center)

Medical records of patients
Law school students’ features

Features of individuals applying for credit

Regression for Parkinson’s level
Regression for GPA
Classification (good or bad)

Sex of patient
Race of students
Sex of individual

40

Bias
(S
S

—&—Lin. PCA, C —%—RBFPCA,C —e—FVNN, C

Lin. PCA, Cpa RBF PCA, Cyp.i FVNN, Cpai

| | | | |

v v
A 9 0.1} -
20051 .
-1 M

v i ety STTICU 0 B B

| | | | | | | | |

70 80 90 100 110 0.86 0.88 0.9 0.92
Error Error

0.2

721
5015
as]

0.1

0.3 032 0.34 0.36

Error

0.38 0.4

F-VNNs achieve better fairness and performance than PCA
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Limitations-3

> VNN models discussed so far operate on static data
- Real world applications have dynamic data
- Non-trivial modifications needed to handle temporal, non-stationary data

- Online estimates introduce additional source of errors
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Limitations-3

> VNN models discussed so far operate on static data

- Real world applications have dynamic data

- Non-trivial modifications needed to handle temporal, non-stationary data

- Online estimates introduce additional source of errors

> Spatio-temporal VNNs (STVNNs)

VNNs for spatio-temporal datasets
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Spatiotemporal VNNs

> Model design

e Online covariance matrix estimate

ét—l—l = Ctét + 5t(Xt+1)(Xt+1)T
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Spatiotemporal VNNs

> Model design

e Online covariance matrix estimate

ét—l—l = Ctét + 5t(Xt+1)(Xt+1)T

e Spatio-temporal coVariance filter

-1 K Spatial and temporal
7y 1= H(Ct, h;, x7.¢) g E hkt/C Xt 4! convolution
t'=0k=0
Covariance estimation  Spatial embeddings Temporal sum  Final embeddings
. A A - A RIS - RENE - R
Ct-2 Ct-1 Ct
| ' N
Graph N o P [
hy! ¥ !4+ hy: *ethyt Sl
SRR R
ioF T
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Spatiotemporal VNNs

> STVNN

 Sequences of spatio-temporal covariance filters followed by non-linearity

~ I—1 i
Z_lt = O (Hl(Ct, ht, ZT:t ) 3
T-1 K . -
zZ1 = Z Z hlkzt/ct Xp_ ¢! > X1 = O‘[Zl]
. t/=0#~=0 Layer 1
* Online parameter updates
X1
hit1 =hy — Vi L(P(x7:, Ct;hy)) -
T—1 K . Zo
z] = Z Z ot Cf Xy _yr > Xo = O'|:Z2j|
t=0~=0 Layer 2

> x3 = ®(x7.4, Crihy)
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Spatiotemporal VNNs

> STVNN

 Sequences of spatio-temporal covariance filters followed by non-linearity

Zi — 0 (Hl(ét,ht,ZlT_:tl )

X

T—-—1 K : " z1
zZ1 = Z Zhlkt/Ctxt_t/ > Xlzd[zl]
. =0 F=0 Layer 1
* Online parameter updates Y
X1
hit1 =hy — Vi L(P(x7:, Ct;hy)) Xl\
T—1 K . Zo
e STVNNs are stable 1= 3 3 har Oy [ 2 = 0|22
Layer 2

Stability bound oc @ (L) )

NG

> x3 = ®(x7.4, Crihy)

Sihag, Mateos, Isufi, Ribeiro
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Numerical results

> Time series forecasting task (weather data and currency exchange rates)

Train with one covariance, test with another estimated from fewer samples

S —— STVNN (T=1) —— STVNN (T=10) S —— STVNN (T=1) —— STVNN (T=10) g
@ 10°f — STVNN (T7=5) —— TPCA @ 104 —— STVNN (T=5) —— TPCA §
%'jq:: W 'té: e?‘q::
B
bDlO ¥ '_Solo_l 'SD
= = =
s B M = _9 = 9
£ 1075 210 S107% g (T=1) —— STVNN (T=10)
L% 5 ma —— STVNN (I=5) —— TPCA
-3 | | | | | | -3 | | | | | -3 ] ] ] ] I
10 0 1000 2000 3000 4000 5000 6000 10 0 100 200 300 400 500 10 0 1000 2000 3000 4000 5000
Samples Samples Samples
NOAA Molene Exchange rate
STVNNSs are more stable than temporal-PCA (TPCA)
Higher T , lower stability
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Numerical results

> Time series forecasting task (brain imaging data)

- Data: HCP Young-adult dataset o B

—— 414
—%— 614

0.150 -

-  BOLD data at at spatial scales

0.125 A

of 114, 314, 414, 614

0.075

« Train model on 314 resolution

0.050 -

o Teston 114,414, 614 resolutions ™| * | | | |
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Numerical results

> Time series forecasting task (brain imaging data)

- Data: HCP Young-adult dataset e B

—— 414
—%— 614

0.150 -

-  BOLD data at at spatial scales

0.125 -

of 114, 314, 414, 614

0.075

« Train model on 314 resolution

0.050 -

o Teston 114,414,614 resolutions | °

Predict Steps

STVNN demonstrates transferability across multi-scale spatio-temporal datasets
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Conclusions and Future Directions
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Covariance filters

A

> A covariance filter is a polynomial in the covariance matrix C
K
H(C) = > mhChx
k=0
> We train the filter coefficients hi to accomplish some task

Cx C2x
> O > C
hO hl h2
H(C)x
- " " >

N
>

Q

N
>
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CoVariance Neural Networks (VNNSs)

> A VNN is a composition of layers

> Each of which is a composition of

... a covariance filter

... with a pointwise nonlinearity

L, . (x, C; H)
Readout |—p Learning

outcome

> &(x; C, H) represents VNN output

——— e ————
<
D
N
—
=
Q
[
]~
&
=
Q
Q

> H is the set of trainable filter taps
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Covariance Filters are Implicitly Equivalent to PCA

Input —, cngriance __, Readout _ Inference Input __, PCA Regression Inference
data filter function output — —

data transform model output
———————————————————————————— M| e ———————————————
: 1] |
I . 1l l
i h(43) i B2 e I
| hd) T 111 |
I 1/’ \ I | |
: ) ’ ‘\ : [ ﬁl ﬁB :

’ AN I

: ' hi) 1) ] Pa '
I 3 I I ~~~.....~--.——. : : T e o o o o :
I . A A A A A . A A A A R
| E!genvalue, /11, /12, /13, ).4, Am, : : Elgenvalue’ /‘llr AZ) 13) Aél-' Am; :
: Eigenvector v, UV, V3 VU, (7 : : Eigenvector v, V, V3V, (7 :
L ________________________________________________________
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Covariance Filters are Implicitly Equivalent to PCA

> The difference is that covariance filters (and VNNs) do not require eigenvectors
Stability: Leading to more stable signal processing

Transferability: And the possibility of transferring trained filters across scales

———————————————————————————— | | T EE S R S S SR S S
: 1] |
I . 1] | [
I h(ﬂz) I [ ,820 I
| 2) /”.\\ [ 1 |
| h(Ag) | 1] |
I , ‘ ‘\\ : | ﬁl ﬁ3 :
Vs N |
: ' b1 1K Ba i
I 3 I I ~~~.'.'. _____ Y : I To o o o o :
, e o
. ” ” . - - 1 " s 2 5 -
y Eigenvalue, Ay, A, A3 1, A : : Eigenvalue, A1, 43, 43,44 A :
: Eigenvector 7, v, V3 D, v, || Eigenvector v, U, V3V, Dy, |
Il 1 [
L --------------------------------------------------------
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Stability of coVariance filters and Neural Networks

> Outputs of coVariance filters NNs on true and estimated covariances are close
HH(@) — H(C)H =0 (ﬁ) = a, HCI)(X, C,?—[) — d(x, C;’H)H < LF¥1q,

> Provided that the filters (at each layer) have Lipschitz frequency responses

[Ai — A

h() — B < Q@

> This requirement limits discriminability but it is a necessary limit
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PCA responds catastrophically to eigenspace estimation

> Difference between true and estimated eigenvectors can be arbitrarily different

||VX — Vx| =0 ( ! )

nl/Qmin#j ‘)\z — )\]|

> Filters process similar eigenvalues with similar coefficients

I- --------------------------- 1 r --------------------------- 1
I Il [
[ [
: I : :83. |
o l l
| TN 1k |
3 /, \‘ [ | |
! s N | |
I s RN h(Ay) I I Ba I
~ [

: (U] I e 1k | .
_— 1] - I

I . N ~ . A~ ~
; Eigenvalue, Az, Ay, : : Eigenvalue, A3, A4, :
: Eigenvector Vs D, 1|y Eigenvector D3 D, I
Il I
e o o o o o e e e e e e e e e e e e e e e e aw am | NN EEN EEN BEN NN SEN BEN BEN BEN BEN BEN EEN BEN BEN BEN BEN BEN BEN BEN BEN BEN BEN BEN EEN EEN EEN SN
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PCA responds catastrophically to eigenspace estimation

> Difference between true and estimated eigenvectors can be arbitrarily different

~ 1
Vx— Vx| =0
[V = Vx| (nl/Qmin#in—)\ﬂ)

> Eigenvectors with similar eigenvalues can be processed with dissimilar coefficients

I- --------------------------- 1 r --------------------------- 1
I Il [
[ [
: I : :83. |
o l l
| TN 1k |
3 /, \‘ [ | |
! s N | |
I s RN h(Ay) I I Ba I
- I

: (U] I e 1k | .
— 1] f I

I . ol A~ . A~ ~
; Eigenvalue, Az, Ay, : : Eigenvalue, Az, A4, :
: Eigenvector Vs D, 1|y Eigenvector D3 D, I
Il I
e o o o o o e e e e e e e e e e e e w ew am | ¥ TN SEN EEN EEN NN BEN BEN BEN BEN BEN BEN EEN BEN EEN SEN BEN EEN BEN BEN EEN BNN BEN BEN BNN BEN BN BN
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PCA responds catastrophically to eigenspace estimation

> Difference between true and estimated eigenvectors can be arbitrarily different

||VX — Vx| =0 ( ! )

nl/Qmin#j ‘)\z — )\]|

> Filters process similar eigenvalues with similar coefficients

I- --------------------------- 1 r --------------------------- 1
I Il [
[ [
: I : :83. |
o l l
| TN 1k |
3 /, \‘ [ | |
! s N | |
I s RN h(Ay) I I Ba I
~ [

: (U] I e 1k | .
_— 1] - I

I . N ~ . A~ ~
; Eigenvalue, Az, Ay, : : Eigenvalue, A3, A4, :
: Eigenvector Vs D, 1|y Eigenvector D3 D, I
Il I
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coVariance Filters and VNNs are Scale-Free Models

> Filters and VNNs are defined by coefficients that we can transfer across scales
> Train at small scale and transfer to large scale

> Train jointly across a heterogeneous range of scales

‘ m1-dimensional data processing ma-dimensional data processing ‘

Xmqy — VNN — &(x,,,;C,,, H) Xmg —— VNN

, L.

learnable parameters
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VNNs are provably transferable

) — I 1 —
mq paFtltlons meo partitions

D (x5 Cony s H) Yx—— VUNN —— O(x,,,;Cpyy H)

| y | L.

learnable parameters

™Mo

Transferability bound

1 1
Hyml o ymz” X O( 3¢/2—1 + 3</2_1) Y for C < (2/37 1]
my ms
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VNNs are provably transferable to limit models

Y I
mq partitions 0 1

(I)(Xml; Cny, 7—[) Yx——— VNN

g Ly

learnable parameters

0'%.0 0.2 04 06 08 1.0

- "
Transferability bound *Assumption: data is a discretization of a common

continuous model Symmetric continuous
function W

1.0

1
||ym1 o y” x O mSC/Q_l ) for C S (2/37 1]

1

0.8

0.6

0.4

0.2

0'9).0 0.2 04 06 08 1.0
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VNNs are well suited for neuroimaging data analysis

> Properties of VNNs make them appealing for neuroimaging data analysis

Connections with PCA :> transparent outcomes by leveraging spectrum of
covariance matrix

Stability |:> reproducible outcomes in limited data settings

Transferability |:> enhanced generalizability and robustness to choice
of brain atlases
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Brain age gap prediction is a transfer learning problem

» Train ML model on a large dataset (healthy population)
Pre-training

Neuroimaging data from .
healthy population ——> MLModel — predicted age

> Apply the pre-trained ML model on a target dataset (neurodegeneration)

m Healthy m® Neurodegeneration
Data from - -

all cohorts ML Model —> Brain age

gap

> Brain age gap is the residual of the model
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A principled approach to brain age gap prediction

> Focus on residuals of the ML model, not prediction performance
> Qualitative evaluation during pre-training
what does the model learn during pre-training on healthy population?
> Interpretability/explainability:
what’s driving elevated brain age gap (residuals) in neurodegeneration?

> Generalizability to diverse target populations
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VNNSs provide an anatomically interpretable and explainable brain age gap

B HC m Neurodegeneration

q
. — Age-bias Brain age gap =
Cortical —yp VNN 2 3 — —>  Bias-corrected VNN — Brain age -
#
#

i correction
thickness output - True age &ap
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VNNSs provide an anatomically interpretable and explainable brain age gap

Cortical ——p VNN
thickness

B HC m Neurodegeneration

q

— ) Brain age gap = .

>3 — Age bl..as —>  Bias-corrected VNN —> Brain age -
correction gap

— output —True age

A
Anatomic interpretability
v B Healthy ® Neurodegeneration
2 “ | Regional -
Residual
|

Brain regions with elevated Coptributing rggions to elevated.
regional residuals in neurodegeneration brain age gap in neurodegeneration
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VNNSs provide an anatomically interpretable and explainable brain age gap

Cortical ——p VNN
thickness

\ - HC Neuro;iegeneration /
Principal components

B HC m Neurodegeneration

q

— ) Brain age gap = .

>3 — Age bl..as —>  Bias-corrected VNN —> Brain age -
correction gap

— output —True age

A
Anatomic interpretability
v B Healthy ® Neurodegeneration
2 “ | Regional -
Residual
|

Brain regions with elevated Coptributing rggions to elevated.
regional residuals in neurodegeneration brain age gap in neurodegeneration
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Concluding Remarks

> Emerging areas
. Sparse VNNs: sparsifying covariance matrix
- Spatiotemporal VNNs: temporal datasets
- Fair VNNs: unbiased outcomes with VNNs

- Optimality of covariance matrices: suitability of covariance to learning task

Application to brain age gap prediction

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications



Future directions

> Learning with cross-covariance graphs

. Links with partial least squares/ canonical correlation analysis

» Expand interpretability/explainability of VNNs

- How are eigenvectors exploited in STVNNs on dynamic datasets?
> Building interpretable biomarkers

- Using other modalities (for e.g., fMRI)

Sihag, Mateos, Isufi, Ribeiro Learning with Covariance Matrices: Foundations and Applications
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