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Brain age gap

> Individual rate of “aging” is different from chronological rate of aging
* Driven by environment, genetics, neurodegeneration

> Brain age provides a biological estimate brain age, derived from neuroimaging
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Brain age gap

> Individual rate of “aging” is different from chronological rate of aging

* Driven by environment, genetics, neurodegeneration
> Brain age provides a biological estimate brain age, derived from neuroimaging
> The brain age gap is the deviation between brain age and chronological age

&3P Brain age gap &« neuropsychiatric
and neurodegenerative diseases

Brain age - - individual risks for neurological,

m Healthy m Neurodegeneration
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Neurodegeneration (in terms of cortical atrophy)

> Neurodegeneration is accelerated decline of structure or function of the brain

> Cortical atrophy: reduction in cortical thickness/volume/area

Preprocessing

(e.g., Freesurfer) x; is cortical
_ . o : thickness for
brain region i

MRI scan Cortical thickness features
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Case study (Neurodegeneration)

» Data: cortical thickness from 3 cohorts ~ *®
« HC (healthy) § %

® T 24

- AD (Alzheimer’s disease) - 22

> Larger cortical atrophy is feature of AD

> MClis precursor to AP | @ @ @
|:> shows intermediate cortical

atrophy between HC and AD @

> Aging also leads to cortical atrophy
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Brain age gap evaluation using ML

Step 1. Train ML model to predict chronological age for healthy controls from cortical thickness features

Least squares line

perfect fit
line ~~ " "obtained on outputs of
ML model
)
a0
Neuroimaging data f . . o
euroimaging da a. rom ML Model 8 /.-
healthy population o ez
©
D
o
True age
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Brain age gap evaluation using ML

Step 1. Train ML model to predict chronological age for healthy controls from cortical thickness features

Least squares line

perfect fit
line ~~ " "obtained on outputs of
ML model
O
o0
Neuroimaging data f . . o
euroimaging da a. rom ML Model 8 /.-
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e,
o
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True age

Step 2. Linear regression-based age-bias correct for outputs of ML model

Step 3. Obtain brain age gap for healthy controls and individuals with neurodegenerative condition.
m Healthy m Neurodegeneration
Brain age gap =

Data from — ML Model — Age-blgs -p Bias-corrected ML model =% Brain age
all cohorts correction
output —True age gap
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Brain age gap prediction is a transfer learning problem

> Train ML model on a large dataset
Pre-training

Neuroimaging data from .
healthy population —> MLModel — predicted age

> Apply the pre-trained ML model on a target dataset

m Healthy m® Neurodegeneration
Data from - -

all cohorts ML Model —> Brain age

gap

> Brain age gap is the residual of the model
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Brain age gap prediction is a transfer learning problem

> Some observations about a meaningful brain age gap

- We expect model performance to degrade in target population
v Degradation in performance (residuals) in a specific direction

v Degradation in performance (residuals) « disease severity/status

B Healthy ® Neurodegeneration
Data from - -

all cohorts ML Model =—>  Brain age

gap
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Choice of learning parametrization

> Choice of ML model dictates how data is leveraged to gauge brain age gap

> Prevalent approaches focus on achieving perfect pre-training performance

- Performance-driven approaches

> Performance-driven approaches do not guarantee meaningful’ brain age gap

m Healthy m Neurodegeneration
Data from - -

all cohorts ML Model —> Brain age

gap
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Choice of learning parametrization

> Neural networks are prevalent in performance-driven approaches

> A Neural Network may not be interpretable and prone to overfitting

I:> methodological obscurity in brain age gap prediction pipeline

= HC = Neurodegeneration

Age Age Bias Braln -Age
— — — A-
ML Model Estimate y Correction  Estimate -age - .
yB

150+
Performance-Driven goo
Approach: Exclusive  E®
Focus on Achieving Wi 70

Lack of Justifications that Tie
_ Qoo ol Tight Fit on the Age of HC Group
Near-Perfect Fit on L. # With Meaningful Brain Age Gap

Healthy Cohort HC 50 60 70 80 90 100 : .
Chronological Age n— in Neurodegeneration
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Choice of learning parametrization

> Neural networks are prevalent in performance-driven approaches

> A Neural Network may not be interpretable and prone to overfitting

I:> methodological obscurity in brain age gap prediction pipeline

Performance in pre-training does not dictate meaningful residuals
in target population
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A principled approach to brain age gap prediction

> Focus on residuals of the ML model, not prediction performance
> Qualitative evaluation during pre-training
what does the model learn during pre-training on healthy population?
> Interpretability/explainability:
what’s driving elevated brain age gap (residuals) in neurodegeneration?

> Generalizability to diverse target populations
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VNNSs provide an anatomically interpretable and explainable brain age gap

B HC m Neurodegeneration

—
. — : Brain age gap = _
Cortical — VNN 3z — C'Ac‘)%ree:’l?osn —>  Bias-corrected VNN — Brain age --
thickness — output - True age &ap
4
0
Mo - m1
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VNNSs provide an anatomically interpretable and explainable brain age gap

B HC m Neurodegeneration

—
. — Age-bias Brain age gap = _
Cortical — 5  yNN 3 5 —» 5O —>  Bias-corrected VNN —> Brain age
thickness — correction output - True age &ap

A A

m Healthy ® Neurodegeneration

g MR @ & .
egional
Residual
I

regional residuals in neurodegeneration brain age gap in neurodegeneration
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VNNSs provide an anatomically interpretable and explainable brain age gap

B HC m Neurodegeneration

—
. — Age-bias Brain age gap = _
Cortical — 5  yNN 3 5 —» 5O —>  Bias-corrected VNN —> Brain age
thickness — correction output - True age &ap

A A

m Healthy ® Neurodegeneration

| }
g @ @ .
egiona -

1
i ) e | Residual
/ X @) ("*b
e onn |
o ‘
= i Q;-/ Brain regions with elevated Contributing regions to elevated

i - i i brain age gap in neurodegeneration
Principal components regional residuals in neurodegeneration
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Network neuroscience

> Modeling brain as a network (connectomes)

Anatomical covariance matrix
(structural connectome) Functional connectome

> Motivation
. Significant redundancies in brain structural/functional features

. Brain structure/function is compromised in heurodegeneration

Sihag, Mateos, Ribeiro Disentangling neurodegeneration with brain age gap prediction: A GSP perspective



Covariance matrices in network neuroscience

> Covariance matrices appear commonly in network neuroscience

Anatomical covariance matrix Functional connectome
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Covariance matrices in network neuroscience

> Covariance matrices appear commonly in network neuroscience

Anatomical covariance matrix Functional connectome

> Inference over covariance matrices in ML

Traditional statistical approaches (for e.g., PCA)

o Interpretable, suitable for low data regimes
- Deep learning approaches (for e.g., GNNs)
o Enhanced expressivity, improved performance

Sihag, Mateos, Ribeiro
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Covariance matrix as a graph

> Covariance matrix is a data-driven graph

T

X = [r1,...,T¢]

Covariance matrix as a fully-connected graph

n

1 n
A A I A
E (x; — ) (x; — fr) ", where i = g X

1=1 1=1
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Covariance matrix as a graph

> Covariance matrix is a data-driven graph

X = [x1,...,76]"

Anatomical covariance matrix

Covariance matrix as a fully-connected graph (estimated from cortical features)

n

1 n
A A I A
E (x; — ) (x; — fr) ", where i = g X

1=1 1=1
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Graph signhal processing

> Signal and information processing is about exploiting signal structure

> Graph signal processing (GSP): broaden classical signal processing to graphs
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This article presents methods to process data associated to graphs (graph signals) extending
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ABSTRACT | Research in graph signal processing (GSP) aims
to develop tools for processing data defined on irregular graph
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Graphs offer the ability to model such data and complex

‘domains. In this paper, we first provid of coreideas in
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GsP and their connection to conventional digital signal processing,
along with a brief historical perspective to highlight how concepts.
recently developed in GSP build on top of prior resean:h in other
areas. We
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tools, including methods for sampling, filtering, or graph learning.
Next, we review progress in several application areas using GSP.
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I. INTRODUCTION AND MOTIVATION

Data is all around us, and massive amounts of it. Almost
every aspect of human life is now being recorded at all lev-
els: from the marking and recording of processing inside the
cells starting with the advent of fluorescent markers, to our
personal data through health monitoring devices and apps,
financial and banking data, our social networks, mobility
and traffic patterns, marketing preferences, fads, and many
‘more. The complesity of such networks [1] and i

ling na princi-
pled way. The ﬁcldthalgat}\cr: all these questions under a com-
mon umbrella s graph signal processing (GSP) 2}, [3].

While the precise definition of a graph signal will be
given later in the paper, let us assume for now that a graph
signal is a et of values residing on a set of nodes. These nodes
are connected via (possibly weighted) edges. As in classical

al processing, such signals can stem from a variety of
domains; unlike in classical signal processing, however, the
underlying graphs can tell a fair amount about those signals
through their structure. Different types of graphs model dif-
ferent types of networks that these nodes represent.

‘Typical graphs that are used to represent common real-
world data include Erdds-Reényi graphs, ring graphs, random

means that the data now reside on irregular and complex
structures that do not lend themselves to standard tools.

eometric graphs, small-world graphs, power-law graphs,
‘graphs, scale-free graphs, an
These model networks with random connections (Erdfs-
Rényi graphs), networks of brain neurons (small-world
‘graphs), social networks (scale-free graphs), and others.
As in classical signal processing, graph signals can have

Graph Signal Processing

History, development, impact, and outlook

ignal processing (SP) excels at analyzing, processing, and

inferring information defined over regular (first continu-

ous, later discrete) domains such as time or space. Indeed,
the last 75 years have shown how SP has made an impact in
areas such as communications, acoustics, sensing, image
processing, and control, to name a few. With the digitaliza-
tion of the modern world and the increasing pervasiveness of
data-collection mechanism
applications oftentimes arises in non-Euclidean, irregular do-
mains. Graph SP (GSP) generalizes SP tasks to signals living
on non-Euclidean domains whose structure can be captured by
a weighted graph. Graphs are versatile, able to model irregu-
lar interactions, easy to interpret, and endowed with a corpus
of mathematical results, rendering them natural candidates to
serve as the basis for a theory of processing signals in more
irregular domains.

‘The term graph signal processing was coined a decade ago
in the seminal works of [1], [2], [3], and [4]. Since these papers
were published, GSP-related problems have drawn significant
attention, not only within the SP community [5] but also in
‘machine learning (ML) venues, where research in graph-based
learning has increased significantly [6]. Graph signals are well-
suited to model measurements/information/data associated
with (indexed by) a set where 1) the elements of the set belong
10 the same class (regions of the cerebral cortex, members of
a social network, weather stations across a continent); 2) there
exists a relation (physical or functional) of proximity, influence,
or association among the different elements of that set; and 3)
the strength of such a relation among the pairs of elements is
not homogeneous. In some scenarios, the supporting graph is
a physical, technological, social, information, or biological net-
work where the link tly observed. In many other
cases, the graph is implicit, capturing some notion of depen-

information of interest in current

Graph Signal Processing for Machine Learning

A review and new perspectives

ization of large-scale structured data, especally those related
to complex domains, such as networks and graphs, are one
of the key questions in modern machine learning. Graph signal
processing (GSP), a vibrant branch of signal processing models
and algorithms that aims at handling data supported on graphs
opens new paths of research to address this challenge. In this ar-
. we review a few important contributions made by GSP con-
cepts and tools, such as graph filters and transforms, to the devel-
opment of novel machine learning algorithms. In particular, our
discussion focuses on the following three aspects: exploiting data
siructure and eltonalpriors,improving data and computton-
1 model
we provide new perspectives on the future development of GSP
techniques that may serve as a bridge between applied mathe-
matics and signal processing on one side and machine learning
and network science on the other. Cross-fertilization across these
different disciplines may help unlock the numerous challenges of
complex data analysis in the modern age.

-I-m effective representation, processing. analysis, and visual-

Introduction

‘We live in a connected society. Data collected from large-scale
interactive systems, such as biological, social, and financial
ks, become largely available. In parallel, the past few

networl

decades have seen a significant amount of interest in the ma-
chine learning community for network data processing and
analysis. Networks have an intrinsic structure that conveys
very specific properties to data, e.g. interdependencies be-
tween data entities in the form of pairwise relationships. These
properties are traditionally captured by mathematical repre-
sentations such as graphs.

In this context, new trends and challenges have been devel-

ooyt Properties, such as smoothness, that need to be appropri- dence or similarity across nodes, and the links must be inferred oping fast. Let us consider, for example, a network of protein-
(e-mai-antonio.ortega@sipiusc.edul ately defined. They can also be represented via basic atoms from the data themselves. As a result, GSP is a broad frame- protein interactions and the expression level of individual genes
Lausanne and can have a spectral representation. In particular, the work that encompasses and extends classical SP methods, tools, at every point in time. Some typical tasks in network biology
i itsburgh graph Fourier transform allows us to develop the intuition and algorithms to application domains of the modern techno- related to this type of data are 1) discovery of key genes (via

P 15213, Ush. . Dol Objct denier 10.1109MSF2 ? algorithms to ap ! techr P - ;
gathered in the classical setting and extend it to graphs; we e o et verion: 1 e 2023 logical world, including social, transportation, communication, gl Ohie entfer 101 109/MSP 2020 301591 protein grouping) affected by the infection and 2) prediction
Digal Objectdentie: 10.109/JPROC.2018.2620126 can talkabout quency Dateofcurrntversion: 28 Octaber 2020 of how the host organism reacts (in terms of gene expression)

00159219 & 2018 IEEE
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Graph signal

> Graph signals are mappings x:V » R
—> graph signal is defined on the vertices of the graph

» Graph signal can be represented as a vector x € R™
—> x; denotes the graph signal at i-th vertexin V
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Graph signal

Cortical thickness features
> Graph signals are mappings x:V » R are graph signals

—> graph signal is defined on the vertices of the graph

» Graph signal can be represented as a vector x € R™
—> x; denotes the graph signal at i-th vertexin V

Sihag, Mateos, Ribeiro Disentangling neurodegeneration with brain age gap prediction: A GSP perspective



Preliminaries: Graph filter

> Graph filter H maps graph signal X to another graph signal z via linear-shift-

and-sum operation
z = H(S)x,

K
where H := h,S° + h;S* + h,S? + - + h,S¥ = thsk
k=0
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Graph filter on covariance matrix

> Covariance matrix forms a fully-connected graph where X = [Z1,...,%6

- nodes are features

- edges are covariance values

> Graph filter on covariance matrix Cis defined as

K
H(C) =) hiC'x
k=0

X ~ CX ~ CQX ~ é3x
> C > C > C
lho h1 lhg hs
() (D) LD () HOx
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CoVariance filter

A

> Analogy between H(C) and PCA

- Using eigendecomposition VAVT , it follows that

C
K K X L K ,
z=H(Cx = mnCx=3 mVA Vx= V(Z h A )VTX
k=0 k=0 k=0

\ Y l\_"_’

Frequency response  PCA
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CoVariance filter

> Analogy between H(C) and PCA

A A

Using eigendecomposition C = VAV , it follows that

K K K
= H C)X — Z hkékx — Z thAkVTX — (Z hkAk)VTX
k=0 k=0 k=0
\ y J \_"_’

Frequency response  PCA

coVariance filter and PCA are conceptually equivalent

Viz = (th )

i-th component is modulated by h(A) = XK _  heA¥
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CoVariance Neural Networks (VNNSs)

> coVariance filters can learn only linear representations
» To accommodate learn non-linear representations, concatenate coVariance

filter with pointwise non-linearity o (for e.g., ReLU, sigmoid, etc.)
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CoVariance Neural Networks (VNNSs)

> coVariance filters can learn only linear representations
» To accommodate learn non-linear representations, concatenate coVariance

filter with pointwise non-linearity o (for e.g., ReLU, sigmoid, etc.)

Example: A two-layer VNN

1 A
:4----- Data X==p VNN = Qutput ®(x;C,H)

T

K
Hy(C) =) h;CF =l of:)
k=0

t
C

L, ®(x, C; H)
ey Learning

outcome

|

|

|

|

|

|

| R =
:Layerz Hy(€) =3 hopCF =l ()
I k=0
|

|

|

|

|

|
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CoVariance Neural Networks (VNNSs)

> coVariance filters can learn only linear representations
> To accommodate learn non-linear representations, concatenate coVariance

filter with pointwise non-linearity o (for e.g., ReLU, sigmoid, etc.)

Example: A two-layer VNN

: R
j-====Data X==p VNN = Qutput ®(x;C,H)

t

A

C
> O (x; C, H) represents VNN output

T

K
Hy(C) =) h;CF =l of:)
k=0

> H is set of all filter taps

L, ®(x, C; H)
ey Learning

outcome

|

|

|

|

|

|

| R =
:Layerz Hy(€) =3 hopCF =l ()
I k=0
|

|

|

|

|

|
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VNNs are well suited for neuroimaging data analysis

> Theoretical properties of VNNs make them appealing for neuroimaging data

analysis

Connections with PCA :> transparent outcomes by leveraging spectrum of
covariance matrix

Stability |:> reproducible outcomes in limited data settings

Transferability ——> enhanced and to choice
of brain atlases
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VNN vs PCA on age prediction task

» Regression task Cortical thickness

VNN —— Estimate of age

data
> Comparison against PCA-regression
Data: cortical thickness dataset
» Metric: MAE (mean absolute error)
VNN VNN: coVariance Neural Network

—+- PCA-LR
----- PCA-rbf

PCA-LR: PCA-regression with linear kernel

PCA-rbf: PCA regression with rbf kernel

VNN outperforms PCA and is more stable

0 50 100 150 200 250 200 3[R0

Sihag, Mateos, Ribeiro Disentangling neurodegeneration with brain age gap prediction: A GSP perspective



VNNSs provide an anatomically interpretable and explainable brain age gap

— —
. —> —
Cortical =—p VNN —p 2 —> Predicted age
thickness —p —>
— —
A
0
mlO }nl
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VNNSs provide an anatomically interpretable and explainable brain age gap

— o
. # #
Cortical —»  yNN 3 £ — Predicted age
thickness —p —
— —
A
0 & Unweighted readout function
= T (keeps track of how residuals change in target population)
Mo - m1
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VNNSs provide an anatomically interpretable and explainable brain age gap

Y. —» Predicted age

—
Cortical —»
.ortlca :: VNN
thickness —p

—

HH

m Healthy ® Neurodegeneration

- v
egional
Residual

Brain regions with elevated
regional residuals in neurodegeneration
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VNNSs provide an anatomically interpretable and explainable brain age gap

B HC m Neurodegeneration

Cortical

—
> , Brain age gap = _
WN 3z — Agebias - pias.corrected NN — Brain age -
thickness ::

correction
output - True age gap

A A

HHL

m Healthy ® Neurodegeneration

g MR @ & .
egional
Residual
I

regional residuals in neurodegeneration brain age gap in neurodegeneration
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Experiments

> Participants from OASIS-3 dataset [*], 148 cortical thickness features per individual

Number 611 194 .
HC group: cognitively normal
Age 68.38 (7.62) 74.72 (7.02) AD group: AD diagnosis
Sex (m/f 260/351 100/94 e ) )
(m/h) CDR: Clinical dementia rating
CDR sum of boxes 0 3.45 (1.74)

> Brain age gap is elevated in AD group and correlated with CDR sum of boxes

p = 0.474 (p-value = 2.88 x 10712

Anatomical interpretability
[*] Pamela J LaMontagne, et al. OASIS-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer disease. MedRxiv, 2019

OASIS-3 (DKT atlas)

w £y w o ~ (o]
n L - ) s |

N

CDR Sum of Boxes

=
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Experiments

» VNN distinctly exploits eigenvectors in AD and HC groups

Eigenvector 1 Eigenvector 2
0.6 - —

s e T
5 058 sl
S056 .t o uF
o 7 f::.“',—i ::?:
o 0.54; !‘., . e A
— e $ P
Q052 %ﬁ 1 T
(- -4 | l'?
— 05{ : E

HC AD AD

I:> explains anatomical interpretability of brain age gap in AD
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Experiments

* Whole brain cortical thickness dataset for Frontotemporal Dementia (FTD)

e Healthy controls (HC, n =114, age = 64.51 + 6.51 years, 65 females)
* FTD diagnosis (FTD, n =119, age = 64.72 £ 6.78 years, 47 females)

* 68 cortical thickness features (Desikan-Killiany atlas)

Brain age gap distributions Anatomic interpretability Explaining anatomic interpretability

Eigenvector 1 Eigenvector 4
0.35 0.47

.bJ ' +7 .b.l 0.46 - 7'7
5 03 kS 5045 H.
3 . Fe So044[ uE R
o . & 2 .
o A 0 0.43 e 2y
] ; i = 0.42 5y
c 2 C 0.41

Ay
— i — 04
0.39 —
FTD HC FTD

F-value
(FTD > HC) 0 25
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Brain age gap prediction on multi-scale datasets

> Datasets capture information about same phenomenon at different scales

Dataset with m features Dataset with m, features

40412

20 (& i R
07-.'_l =

Covariance matrix C,,,, Covariance matrix Cp,
(size my X mq) (size ma X m2)
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Recap: Transferability of VNNs cross-validates brain age gap in multi-resolution setting

Objective: Brain age gap prediction in HC (healthy) and AD+ (Alzheimer’s) cohorts from
VNNSs trained on 100-feature dataset

DO A8 &
= * ROIls contributing to elevated

100 parcels 300 parcels 500 parcels brain age gap in AD+ across
@ @ @ @ @ @ different resolutions

 Brain age gap is elevated in

FTDC100* FTDC300 FTDC500
AD+ w.r.t HC cohort in 100-
o feature dataset
:?)’4.0 :?)’4‘0 .
< < 2 * Results on brain age gap
retained after transferring
VNN to 300 and 500-feature
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Conclusions

> Brain age gap prediction models show wide generalizability

> VNNSs provide a principled perspective to brain age gap

* anatomically interpretable and explainable

> VNN-derived brain age is a biomarker for tracking neurodegeneration and

disease monitoring

> Transferability of VNNs help cross-validate interpretability
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