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Brain age gap

Ø Individual rate of “aging” is different from chronological rate of aging

• Driven by environment, genetics, neurodegeneration

Ø Brain age provides a biological estimate brain age, derived from neuroimaging
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Brain age gap 

Ø Individual rate of “aging” is different from chronological rate of aging

• Driven by environment, genetics, neurodegeneration

Ø Brain age provides a biological estimate brain age, derived from neuroimaging

Ø The brain age gap is the deviation between brain age and chronological age
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Neurodegeneration (in terms of cortical atrophy)

4

Ø Neurodegeneration is accelerated decline of structure or function of the brain

Ø Cortical atrophy: reduction in cortical thickness/volume/area 

   (characteristic of healthy aging and disorders like Alzheimer’s disease (AD), 

    frontotemporal dementia (FTD), etc.)

Figure 2: Anatomic features and anatomic covariance matrix.

stratification in the spirit of this paper have relevance for precision medicine, as such advancements77

can lead to actionable insights quickly with relatively less time and resource consumption.78

The key contribution of this paper lies in providing a principled approach of leveraging reconstructed79

anatomic features derived from coVariance neural network (VNN)-driven (supervised) autoencoder80

to achieve better clinical stratification than that possible by standard anatomic features extracted from81

structural MRI. VNNs have recently been studied as graph neural networks (GNNs) operating on82

the sample covariance matrix graph, to advance the theoretical and empirical principles of statistical83

inference [29–34]; see supplementary material for a review of VNN models and their previous84

applications in neuroimaging data analysis and computational neuroscience.85

2 A VNN-driven approach to transforming anatomic features86

Preliminaries. The setups of the anatomic features and anatomic covariance matrix are illustrated87

in Fig. 2. In this paper, the anatomic features are derived from structural MRI, with each element88

representing a statistic (such as cortical thickness) associated with a distinct brain region. Moreover,89

the anatomical covariance matrix provides the graph representation of the inter-relationships between90

different anatomic features across the whole brain [35]. Anatomic features and anatomic covariance91

matrix hold significant relevance in computational neuroscience, where recent works on morphometric92

similarity networks have generalized the concept of anatomical covariance to include multiple93

modalities of information inherent within structural MRI [36] and demonstrated their relevance to94

identifying biomarkers [37].95

To set up the VNN-driven approach technically, consider a dataset consisting of n individuals, whose96

anatomic features are represented by m-dimensional vectors, such that, the vector of anatomic97

features for individual i is given by xi → Rm→1. The anatomic covariance matrix for this dataset is98

estimated as99

C ↭ 1

n ↑ 1

n∑

i=1

(xi ↑ x̄)(xi ↑ x̄)T , (1)

where x̄ is the sample mean of anatomic features across the dataset. Similar to GNNs that leverage100

linear-shift-and-sum operators over matrix representation of a graph as graph filters [38–40], the101

convolution operation in a VNN is modeled by a coVariance filter, given by102

H(C) ↭
K∑

k=0

hkC
k , such that, output z = H(C)x for input x → Rm→1 (2)

The scalar parameters {hk}
K
k=0 are the filter taps that are learned from the data. Note that the103

application of coVariance filter preserves the shape of the input x at the output z.104

coVariance filters and PCA. The foundational works on VNNs have leveraged the eigendecom-105

position of the covariance matrix C to establish that coVariance filter is fundamentally similar to106

the well-known principal component analysis (PCA)-transform [29, 32]. Specifically, given the107

eigendecomposition C = V!V
T, where V is the matrix of eigenvectors of C and ! is a diagnonal108

matrix of eigenvalues {ωi}
m
i=1 ordered as ω1 ↓ ω2 · · · ↓ ωm, it can be readily checked that109

V
T
z = h(!)VT

x where h(!) =
K∑

k=0

hk!
k
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Various facets of the schematic brain age gap prediction 
workflow in Figure S2 are highlighted next. This workflow 
is motivated primarily by the hypothesis that a machine 
learning (ML) model pretrained to gauge healthy aging 
can detect accelerated aging (i.e., infer that brain age is 
greater than chronological age).

Data curation
The training set for the ML model consists of the chronolog-
ical age and the features that are derived from the structur-
al magnetic resonance imaging (MRI) scans of a cohort of 
healthy individuals. The MRI scans may be preprocessed 
via image processing pipelines (such as FreeSurfer [3] and 
CAT12 [S3]) to extract meaningful features predictive of 
aging (for example, brain volume or thickness at each 
voxel). Moreover, the extracted features may be organized 
anatomically according to a preselected brain atlas [S2]. 
Some of the ML pipelines that are directly operated on the 
raw MRI scans are discussed in [S4]. <AU: Please check 
whether the preceding edited sentence conveys the intend-
ed meaning.>

Training the ML model as a regression model
The features extracted from structural MRI are used as pre-
dictors in a regression model that is trained to predict the 
chronological age of the healthy population. This pre-
trained model provides an estimate yt  for an individual 
with chronological age y. The regression model is selected 
from the class of ML approaches that is suitable for multi-
variate data analyses, such as support vector regression, 
principal component analysis (PCA)-based regression, 
GNNs, or convolutional neural networks (CNNs). The loss 
function penalizes the deviation (e.g., mean-squared error) 
between the predicted outcome yt  and the chronological 
age .y  <AU: Please check whether the preceding edited 
sentence conveys the intended meaning.>

Age-bias correction
The predictions generated by the regression model for the 
healthy population are further evaluated for age bias, 
which may arise when the correlation between predicted 
age and chronological age is markedly smaller than one. 
In this scenario, the age of younger individuals may be 

How Is Brain Age Gap Evaluated?

FIGURE S2. Schematic of brain age gap prediction using ML. (a) Setting up the workflow for estimating brain age: training a regression model and 
debiasing its outputs. Neuroimaging data, formed by T1-weighted structural MRI scans from a set of healthy individuals, are labeled with their 
respective chronological age. Preprocessing pipelines using standard tools, such as FreeSurfer, may be applied to extract relevant features from 
the MRI scan. A regression model is trained using the extracted features or the raw MRI scans, as preferred. The outputs of the ML model are then 
corrected for any age biases using an appropriate statistical correction procedure. Note that the age-bias correction is applied after training the 
regression model. The age-bias corrected outputs form the estimate of the brain age. 1) Labeled data from the HC. 2) Brain age versus chronologi-
cal age. (b) Deployment for brain age gap prediction. 3) The trained ML model and its associated age-bias correction module can then be deployed 
to predict brain age using neuroimaging data preprocessed from a new dataset. 4) The brain age gap is obtained as the difference between the 
predicted brain age and the chronological age. <AU: Please check that the !gure is labeled correctly. Kindly spell out +ve.>
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Case study (Neurodegeneration)
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(Continued )

In this case study, we leverage the 
dataset from the Alzheimer’s 
Disease Neuroimaging Initiative 
study [S1] <AU: Please note that 
sidebars are placed in order of 
text citation. The reference (and its 
citations) have been renumbered 
accordingly.> to demonstrate corti-
cal atrophy in Alzheimer’s disease 
(AD). This dataset consisted of 
three cohorts: 1) 206 healthy indi-
viduals [(healthy cohort (HC); 
age . .73 87 6 39!=  years, 110 
females], 2) 372 individuals diag-
nosed with mild cognitive impair-
ment (MCI; <AU: Kindly spell 
out MCI.> age= . .72 26 7 61!  
years, 160 females), and 3) 118 
individuals diagnosed with AD 
(age= . .73 84 7 56!  years, 56 
females). MCI diagnosis repre-
sents an early stage of loss of cog-
nitive ability and is a precursor to 
AD. For each individual, 68 corti-
cal thickness features were avail-
able. These features are publicly 
available at https://adni.loni.usc.
edu/ and had been derived by 
processing T1-weighted structural 
MRI scans via FreeSurfer software 
[3]. The cortical thickness features 
were curated according to the 
Desikan–Killiany brain atlas [S2].

Figure S1 <AU: Please note that 
sidebars are placed in order of text 
citation. The figure (and its citations) 
have been renumbered accordingly.> summarizes the charac-
terization of neurodegeneration via brain atrophy as deter-
mined by cortical thickness features. Figure S1(a) illustrates  
the distributions of mean cortical metrics (across the whole 
brain) for the HC, MCI, and AD cohorts. With the reduction in 
mean cortical thickness representing brain atrophy, it is appar-
ent that the AD group exhibited higher brain atrophy than the 
HC group, with the MCI group falling in between them. 
Moreover, mean cortical thickness metrics for all groups exhib-
ited negative linear relationships with age [Figure S1(b)], sug-
gesting that neurodegeneration was a characteristic of aging 
across all groups. Figure S1(c) and (d) provide the anatomic 
characterizations of brain atrophy in terms of cortical thickness 
features in MCI and AD groups. The MCI group exhibited sta-
tistically significant reduction in cortical thickness relative to 
HC group [ANCOVA (analysis of covariance) with age as 

covariate and a p  value after Bonferroni correction of less 
than 0.05] in the bilateral medial temporal lobe and temporo-
parietal junction regions. A similar analysis revealed more 
prominent brain atrophy across a majority of brain regions in 
AD relative to the HC in Figure S1(d), with the most prominent 
regions of atrophy including the bilateral entorhinal and the 
medial temporal lobe. The contrast in the effect sizes of brain 
atrophy for the MCI group in Figure S1(c) and the AD group 
in Figure S1(d) is reasonable as the MCI diagnosis is typically 
a precursor of AD diagnosis.

References
[S1] B. T. Wyman et al., “Standardization of analysis sets for reporting 
results from ADNI MRI data,” Alzheimer’s Dementia, vol. 9, no. 3, pp. 
332–337, 2013, doi: 10.1016/j.jalz.2012.06.004.
[S2] R. S. Desikan et al., “An automated labeling system for subdividing the human 
cerebral cortex on MRI scans into gyral based regions of interest,” NeuroImage, 
vol. 31, no. 3, pp. 968–980, 2006, doi: 10.1016/j.neuroimage.2006.01.021.

Case Study 1: Cortical Atrophy Characterizes Neurodegeneration in Alzheimer’s Disease
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FIGURE S1. (a) Distributions of mean cortical thickness across the 68 cortical regions in HC, MCI, and 
AD cohorts. (b) Scatterplot between the mean cortical thickness and age for the HC, MCI, and AD 
cohorts. The lines that represent the linear fit for individual cohorts are also shown. (c) Brain atrophy 
as derived from cortical thickness in the MCI cohort relative to the HC cohort. (d) Brain atrophy as 
derived from cortical thickness in the AD cohort relative to the HC cohort. In (c) and (d), the F values 
associated with statistically significant group differences in cortical thickness between MCI or AD 
groups and the HC group as given by ANCOVA (analysis of covariance) with age as covariate (p value 
after Bonferroni correction less than 0.05) have been projected on the brain surface.

Ø Data: cortical thickness from 3 cohorts
• HC (healthy)
• MCI (Mild cognitive impairment )
• AD (Alzheimer’s disease)

Ø Larger cortical atrophy is feature of AD

Ø MCI is precursor to AD 
                shows intermediate cortical 
                atrophy between HC and AD

Ø Aging also leads to cortical atrophy 
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Brain age gap evaluation using ML
Step 1. Train ML model to predict chronological age for healthy controls from cortical thickness features
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Brain age gap evaluation using ML

Step 2. Linear regression-based age-bias correct for outputs of ML model

Step 1. Train ML model to predict chronological age for healthy controls from cortical thickness features

True age

perfect fit 
line

Least squares line
obtained on outputs of 

ML model

ML Model

Data from 
all cohorts

Age-bias 
correction

Brain age gap = 
Bias-corrected ML model 

output – True age
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Brain age gap prediction is a transfer learning problem
Ø Train ML model to predict age on a large dataset (healthy population)

Ø Apply the pre-trained ML model on a target dataset (neurodegeneration) 

Ø Brain age gap is the residual of the model

Neuroimaging data from 
healthy population predicted ageML Model

Data from 
all cohorts
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Brain age gap prediction is a transfer learning problem

Ø Some observations about a meaningful brain age gap

• We expect model performance to degrade in target population 

ü Degradation in performance (residuals) in a specific direction

ü Degradation in performance (residuals) ∝ disease severity/status

Data from 
all cohorts
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Choice of learning parametrization

Ø Choice of ML model dictates how data is leveraged to gauge brain age gap

Ø Prevalent approaches focus on achieving perfect pre-training performance

• Performance-driven approaches

Ø Performance-driven approaches do not guarantee `meaningful’ brain age gap

Data from 
all cohorts
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Choice of learning parametrization
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Adoption of principles 1–4 in brain age gap prediction will 
fundamentally shift the primary focus to age-T  prediction as a 
biomarker, rather than being a by-product of age prediction in 
performance-driven approaches.

Our discussion in “Adding Mathematical Depth to Brain 
Age Gap Prediction” summarized the desirable mathemati-
cal principles behind brain age gap prediction to improve 

its practical viability. Traditional ML methods or the preva-
lent deep learning models adhere to some but not all of the 
aforementioned principles. For instance, a PCA-regression 
model could address the requirements of principle 2 via a 
transparent evaluation of ,age-T  but at the same time, such 
a model may suffer from instability [32]. At the other end 
of the spectrum, deep learning models can offer improved 
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FIGURE 1. Performance-driven approaches to T-age prediction prioritize a near-perfect fit on the chronological age of the HC, yet they lack the conceptual 
or statistical justifications to ensure the relevance of inferred T-age as a biomarker for neurodegeneration.

It is unlikely that the conceptual gap in performance-driven 
approaches regarding the statistical dependency between 
the accuracy of the model during training on healthy individ-
uals and T-age as a biomarker for neurodegeneration can 
be bridged with experiments alone. Therefore, the develop-
ment of relevant mathematical principles is critical for a via-
ble and generalizable practical methodology. To this end, 
we identify the following four mathematical principles:
1) Principle 1—Focusing on T-age as a residual of regres-

sion tasks. The residuals of the regression models in-
form the T-age estimates when the machine learning 
(ML) model is deployed to predict chronological age 
for individuals with adverse health conditions. Hence, 
it is paramount to focus on the structure and statistics of 
the residuals of the age prediction model, rather than 
the age prediction task itself, to validate the viability of 
T-age as a biomarker.

2) Principle 2—Shift the focus to a qualitative evaluation of 
ML models trained on the healthy population. It is key to 
go beyond the performance on the chronological age 
prediction task and instead focus on a holistic character-
ization of the representations that the ML model learns 
when exposed to data from the healthy population.

3) Principle 3—Transference of pretrained age prediction 
models to neurodegenerative cohorts for constructing D
-age as a biomarker. In principle, predicting D -age in 

neurodegenerative cohorts can be perceived as an un-
supervised transfer learning problem, where we expect 
a degradation in performance. This problem is unsuper-
vised because the expected amount of drift in model 
performance is unknown (i.e., there is no ground truth for 
brain age in neurodegenerative cohorts). It would be de-
sirable to identify the specific deviations in the informa-
tion processing pipeline itself, which are the contributors 
to the elevated T-age observed in neurodegeneration.

4) Principle 4—Generalizability beyond specific dimen-
sionality of the data. Due to the existence of different 
brain atlases, the neuroimaging datasets that charac-
terize the same population can have arbitrary dimen-
sionalities in independently conducted studies [S7]. This 
creates a challenge for reproducibility of findings as 
the prevalent performance-driven approaches in both 
traditional ML and deep learning are limited within the 
dimensionality of the dataset on which they have been 
trained. To address this challenge, we need mathemati-
cal principles that govern the reproducibility of findings 
derived using an ML model across datasets of different 
dimensionalities, without being retrained from scratch.

Reference
[S7] T. A. Woolsey, J. Hanaway, and M. H. Gado, The Brain Atlas: A 
Visual Guide to the Human Central Nervous System. Hoboken, NJ, USA: 
Wiley, 2017.

Adding Mathematical Depth to Brain Age Gap Prediction

Ø Neural networks are prevalent in performance-driven approaches

Ø A Neural Network may not be interpretable and prone to overfitting

methodological obscurity in brain age gap prediction pipeline
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Choice of learning parametrization
Ø Neural networks are prevalent in performance-driven approaches

Ø A Neural Network may not be interpretable and prone to overfitting

methodological obscurity in brain age gap prediction pipeline

Performance in pre-training does not dictate meaningful residuals 
in target population
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A principled approach to brain age gap prediction

Ø Focus on residuals of the ML model, not prediction performance

Ø Qualitative evaluation during pre-training

what does the model learn during pre-training on healthy population?

Ø Interpretability/explainability: 

what’s driving elevated brain age gap (residuals) in neurodegeneration?

Ø Generalizability to diverse target populations
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VNNs provide an anatomically interpretable and explainable brain age gap
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thickness 
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correction

Brain age gap = 
Bias-corrected VNN 

output – True age
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VNNs provide an anatomically interpretable and explainable brain age gap

Brain regions with elevated 
regional residuals in neurodegeneration

Contributing regions to elevated 
brain age gap in neurodegeneration
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VNNs provide an anatomically interpretable and explainable brain age gap

Brain regions with elevated 
regional residuals in neurodegeneration
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brain age gap in neurodegeneration
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Figure 2: Anatomic features and anatomic covariance matrix.

stratification in the spirit of this paper have relevance for precision medicine, as such advancements77

can lead to actionable insights quickly with relatively less time and resource consumption.78

The key contribution of this paper lies in providing a principled approach of leveraging reconstructed79

anatomic features derived from coVariance neural network (VNN)-driven (supervised) autoencoder80

to achieve better clinical stratification than that possible by standard anatomic features extracted from81

structural MRI. VNNs have recently been studied as graph neural networks (GNNs) operating on82

the sample covariance matrix graph, to advance the theoretical and empirical principles of statistical83

inference [29–34]; see supplementary material for a review of VNN models and their previous84

applications in neuroimaging data analysis and computational neuroscience.85

2 A VNN-driven approach to transforming anatomic features86

Preliminaries. The setups of the anatomic features and anatomic covariance matrix are illustrated87

in Fig. 2. In this paper, the anatomic features are derived from structural MRI, with each element88

representing a statistic (such as cortical thickness) associated with a distinct brain region. Moreover,89

the anatomical covariance matrix provides the graph representation of the inter-relationships between90

different anatomic features across the whole brain [35]. Anatomic features and anatomic covariance91

matrix hold significant relevance in computational neuroscience, where recent works on morphometric92

similarity networks have generalized the concept of anatomical covariance to include multiple93

modalities of information inherent within structural MRI [36] and demonstrated their relevance to94

identifying biomarkers [37].95

To set up the VNN-driven approach technically, consider a dataset consisting of n individuals, whose96

anatomic features are represented by m-dimensional vectors, such that, the vector of anatomic97

features for individual i is given by xi → Rm→1. The anatomic covariance matrix for this dataset is98

estimated as99

C ↭ 1

n ↑ 1

n∑

i=1

(xi ↑ x̄)(xi ↑ x̄)T , (1)

where x̄ is the sample mean of anatomic features across the dataset. Similar to GNNs that leverage100

linear-shift-and-sum operators over matrix representation of a graph as graph filters [38–40], the101

convolution operation in a VNN is modeled by a coVariance filter, given by102

H(C) ↭
K∑

k=0

hkC
k , such that, output z = H(C)x for input x → Rm→1 (2)

The scalar parameters {hk}
K
k=0 are the filter taps that are learned from the data. Note that the103

application of coVariance filter preserves the shape of the input x at the output z.104

coVariance filters and PCA. The foundational works on VNNs have leveraged the eigendecom-105

position of the covariance matrix C to establish that coVariance filter is fundamentally similar to106

the well-known principal component analysis (PCA)-transform [29, 32]. Specifically, given the107

eigendecomposition C = V!V
T, where V is the matrix of eigenvectors of C and ! is a diagnonal108

matrix of eigenvalues {ωi}
m
i=1 ordered as ω1 ↓ ω2 · · · ↓ ωm, it can be readily checked that109

V
T
z = h(!)VT

x where h(!) =
K∑

k=0

hk!
k
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Figure 2: Anatomic features and anatomic covariance matrix.
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Figure 2: Anatomic features and anatomic covariance matrix.
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application of coVariance filter preserves the shape of the input x at the output z.104
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the well-known principal component analysis (PCA)-transform [29, 32]. Specifically, given the107
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Ĉ =
1

n→ 1

n∑

i=1

(xi → µ̂)(xi → µ̂)T, where µ̂ =
1

n

n∑

i=1

xi



Sihag, Mateos, Ribeiro                      Disentangling neurodegeneration with brain age gap prediction: A GSP perspective

Ø Covariance matrix is a data-driven graph

21

1 2

6 3

5 4

<latexit sha1_base64="S6t1SjhQPsgo/c9FnhQoj1rs2eM=">AAACDHicbVBPS8MwHE3nvzn/TT16CQ7BwxityPQiDL14nLB/0NaSZukWlqYlSWWj9AN48at48aCIVz+AN7+N2daDbj4IPN57vyS/58eMSmWa30ZhZXVtfaO4Wdra3tndK+8fdGSUCEzaOGKR6PlIEkY5aSuqGOnFgqDQZ6Trj26mfveBCEkj3lKTmLghGnAaUIyUlrxyJXX8AI4zeAXtsWdVodOPlKzCsVd371NHBrCV6ZRZM2eAy8TKSQXkaHrlL30LTkLCFWZIStsyY+WmSCiKGclKTiJJjPAIDYitKUchkW46WyaDJ1rpwyAS+nAFZ+rviRSFUk5CXydDpIZy0ZuK/3l2ooJLN6U8ThTheP5QkDCoIjhtBvapIFixiSYIC6r/CvEQCYSV7q+kS7AWV14mnbOaVa/V784rjeu8jiI4AsfgFFjgAjTALWiCNsDgETyDV/BmPBkvxrvxMY8WjHzmEPyB8fkDDHeZvw==</latexit>

x = [x1, . . . , x6]
T

Figure 2: Anatomic features and anatomic covariance matrix.

stratification in the spirit of this paper have relevance for precision medicine, as such advancements77

can lead to actionable insights quickly with relatively less time and resource consumption.78

The key contribution of this paper lies in providing a principled approach of leveraging reconstructed79

anatomic features derived from coVariance neural network (VNN)-driven (supervised) autoencoder80

to achieve better clinical stratification than that possible by standard anatomic features extracted from81

structural MRI. VNNs have recently been studied as graph neural networks (GNNs) operating on82

the sample covariance matrix graph, to advance the theoretical and empirical principles of statistical83

inference [29–34]; see supplementary material for a review of VNN models and their previous84

applications in neuroimaging data analysis and computational neuroscience.85

2 A VNN-driven approach to transforming anatomic features86

Preliminaries. The setups of the anatomic features and anatomic covariance matrix are illustrated87

in Fig. 2. In this paper, the anatomic features are derived from structural MRI, with each element88

representing a statistic (such as cortical thickness) associated with a distinct brain region. Moreover,89

the anatomical covariance matrix provides the graph representation of the inter-relationships between90

different anatomic features across the whole brain [35]. Anatomic features and anatomic covariance91

matrix hold significant relevance in computational neuroscience, where recent works on morphometric92

similarity networks have generalized the concept of anatomical covariance to include multiple93

modalities of information inherent within structural MRI [36] and demonstrated their relevance to94

identifying biomarkers [37].95

To set up the VNN-driven approach technically, consider a dataset consisting of n individuals, whose96

anatomic features are represented by m-dimensional vectors, such that, the vector of anatomic97

features for individual i is given by xi → Rm→1. The anatomic covariance matrix for this dataset is98

estimated as99

C ↭ 1

n ↑ 1

n∑

i=1

(xi ↑ x̄)(xi ↑ x̄)T , (1)

where x̄ is the sample mean of anatomic features across the dataset. Similar to GNNs that leverage100

linear-shift-and-sum operators over matrix representation of a graph as graph filters [38–40], the101

convolution operation in a VNN is modeled by a coVariance filter, given by102

H(C) ↭
K∑

k=0

hkC
k , such that, output z = H(C)x for input x → Rm→1 (2)

The scalar parameters {hk}
K
k=0 are the filter taps that are learned from the data. Note that the103

application of coVariance filter preserves the shape of the input x at the output z.104

coVariance filters and PCA. The foundational works on VNNs have leveraged the eigendecom-105

position of the covariance matrix C to establish that coVariance filter is fundamentally similar to106

the well-known principal component analysis (PCA)-transform [29, 32]. Specifically, given the107

eigendecomposition C = V!V
T, where V is the matrix of eigenvectors of C and ! is a diagnonal108

matrix of eigenvalues {ωi}
m
i=1 ordered as ω1 ↓ ω2 · · · ↓ ωm, it can be readily checked that109

V
T
z = h(!)VT

x where h(!) =
K∑

k=0

hk!
k

3

Covariance matrix as a fully-connected graph
<latexit sha1_base64="WQZDE+HFytapoSFYOYmHbQPQpwc="></latexit>
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ABSTRACT | Research in graph signal processing (GSP) aims 

to develop tools for processing data defined on irregular graph 

domains. In this paper, we first provide an overview of core ideas in 

GSP and their connection to conventional digital signal processing, 

along with a brief historical perspective to highlight how concepts 

recently developed in GSP build on top of prior research in other 

areas. We then summarize recent advances in developing basic GSP 

tools, including methods for sampling, filtering, or graph learning. 

Next, we review progress in several application areas using GSP, 

including processing and analysis of sensor network data, biological 

data, and applications to image processing and machine learning.

KEYWORDS | Graph signal processing (GSP); network science 

and graphs; sampling; signal processing

I .  IN TRODUCTION A ND MOTI VATION

Data is all around us, and massive amounts of it. Almost 
every aspect of human life is now being recorded at all lev-
els: from the marking and recording of processing inside the 
cells starting with the advent of fluorescent markers, to our 
personal data through health monitoring devices and apps, 
financial and banking data, our social networks, mobility 
and traffic patterns, marketing preferences, fads, and many 
more. The complexity of such networks [1] and interactions 
means that the data now reside on irregular and complex 
structures that do not lend themselves to standard tools.

Digital Object Identifier: 10.1109/JPROC.2018.2820126

Graphs offer the ability to model such data and complex 
interactions among them. For example, users on Twitter can be 
modeled as nodes while their friend connections can be modeled 
as edges. This paper explores adding attributes to such nodes and 
modeling those as signals on a graph; for example, year of gradua-
tion in a social network, temperature in a given city on a given day 
in a weather network, etc. Doing so requires us to extend classical 
signal processing concepts and tools such as Fourier transform, 
filtering, and frequency response to data residing on graphs. It 
also leads us to tackle complex tasks such as sampling in a princi-
pled way. The field that gathers all these questions under a com-
mon umbrella is graph signal processing (GSP) [2], [3].

While the precise definition of a graph signal will be 
given later in the paper, let us assume for now that a graph 
signal is a set of values residing on a set of nodes. These nodes 
are connected via (possibly weighted) edges. As in classical 
signal processing, such signals can stem from a variety of 
domains; unlike in classical signal processing, however, the 
underlying graphs can tell a fair amount about those signals 
through their structure. Different types of graphs model dif-
ferent types of networks that these nodes represent.

Typical graphs that are used to represent common real-
world data include Erdős–Rényi graphs, ring graphs, random 
geometric graphs, small-world graphs, power-law graphs, 
nearest-neighbor graphs, scale-free graphs, and many others. 
These model networks with random connections (Erdoős–
Rényi graphs), networks of brain neurons (small-world 
graphs), social networks (scale-free graphs), and others.

As in classical signal processing, graph signals can have 
properties, such as smoothness, that need to be appropri-
ately defined. They can also be represented via basic atoms 
and can have a spectral representation. In particular, the 
graph Fourier transform allows us to develop the intuition 
gathered in the classical setting and extend it to graphs; we 
can talk about the notions of frequency and bandlimitedness, 
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S ignal processing (SP) excels at analyzing, processing, and 
inferring information defined over regular (first continu-
ous, later discrete) domains such as time or space. Indeed, 

the last 75 years have shown how SP has made an impact in 
areas such as communications, acoustics, sensing, image 
processing, and control, to name a few. With the digitaliza-
tion of the modern world and the increasing pervasiveness of 
data-collection mechanisms, information of interest in current 
applications oftentimes arises in non-Euclidean, irregular do-
mains. Graph SP (GSP) generalizes SP tasks to signals living 
on non-Euclidean domains whose structure can be captured by 
a weighted graph. Graphs are versatile, able to model irregu-
lar interactions, easy to interpret, and endowed with a corpus 
of mathematical results, rendering them natural candidates to 
serve as the basis for a theory of processing signals in more 
irregular domains.

The term graph signal processing was coined a decade ago 
in the seminal works of [1], [2], [3], and [4]. Since these papers 
were published, GSP-related problems have drawn significant 
attention, not only within the SP community [5] but also in 
machine learning (ML) venues, where research in graph-based 
learning has increased significantly [6]. Graph signals are well-
suited to model measurements/information/data associated 
with (indexed by) a set where 1) the elements of the set belong 
to the same class (regions of the cerebral cortex, members of 
a social network, weather stations across a continent); 2) there 
exists a relation (physical or functional) of proximity, influence, 
or association among the different elements of that set; and 3) 
the strength of such a relation among the pairs of elements is 
not homogeneous. In some scenarios, the supporting graph is 
a physical, technological, social, information, or biological net-
work where the links can be explicitly observed. In many other 
cases, the graph is implicit, capturing some notion of depen-
dence or similarity across nodes, and the links must be inferred 
from the data themselves. As a result, GSP is a broad frame-
work that encompasses and extends classical SP methods, tools, 
and algorithms to application domains of the modern techno-
logical world, including social, transportation,  communication, 
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The effective representation, processing, analysis, and visual-
ization of large-scale structured data, especially those related 
to complex domains, such as networks and graphs, are one 

of the key questions in modern machine learning. Graph signal 
processing (GSP), a vibrant branch of signal processing models 
and algorithms that aims at handling data supported on graphs, 
opens new paths of research to address this challenge. In this ar-
ticle, we review a few important contributions made by GSP con-
cepts and tools, such as graph filters and transforms, to the devel-
opment of novel machine learning algorithms. In particular, our 
discussion focuses on the following three aspects: exploiting data 
structure and relational priors, improving data and computation-
al efficiency, and enhancing model interpretability. Furthermore, 
we provide new perspectives on the future development of GSP 
techniques that may serve as a bridge between applied mathe-
matics and signal processing on one side and machine learning 
and network science on the other. Cross-fertilization across these 
different disciplines may help unlock the numerous challenges of 
complex data analysis in the modern age.

Introduction
We live in a connected society. Data collected from large-scale 
interactive systems, such as biological, social, and financial 
networks, become largely available. In parallel, the past few 
decades have seen a significant amount of interest in the ma-
chine learning community for network data processing and 
analysis. Networks have an intrinsic structure that conveys 
very specific properties to data, e.g., interdependencies be-
tween data entities in the form of pairwise relationships. These 
properties are traditionally captured by mathematical repre-
sentations such as graphs.

In this context, new trends and challenges have been devel-
oping fast. Let us consider, for example, a network of protein–
protein interactions and the expression level of individual genes 
at every point in time. Some typical tasks in network biology 
related to this type of data are 1) discovery of key genes (via 
protein grouping) affected by the infection and 2) prediction 
of how the host organism reacts (in terms of gene expression) 
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Graph signal

Ø Graph signals are mappings 𝑥: 𝑉 ↦ ℝ
             graph signal is defined on the vertices of the graph

Ø Graph signal can be represented as a vector 𝐱 ∈ ℝ!
             𝑥"  denotes the graph signal at 𝑖-th vertex in 𝑉	

23

Graph signals

I Consider graph G = (V, E ,W ). Graph signals are mappings x : V ! R
) Defined on the vertices of the graph (data tied to nodes)

Ex: Opinion profile, bu↵er congestion levels, neural activity, epidemic

I May be represented as a vector x 2 RN

) xn denotes the signal value at the n-th vertex in V
) Implicit ordering of vertices (same as in A or L)
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Cortical thickness features
are graph signals
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Preliminaries: Graph filter

25

Ø Graph filter 𝐇 maps graph signal 𝐱 to another graph signal 𝐳 via linear-shift-
and-sum operation

𝐳 = 𝐇 𝐒 𝐱,
where	𝐇 ≔ ℎ#𝐒# + ℎ$𝐒$ + ℎ%𝐒% +⋯+ ℎ&𝐒& =	
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k=0

hkS
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Fig. 2. The graph convolutional filter as a shift register. Highlighted are the nodes that reach node 1 on each consecutive shift; that is, the nodes j whose
signal value xj contributes to [Skx]i. The resulting summary of each communication Skx is correspondingly weighted by a filter parameter hk . For each
k, the parameter hk is the same for all nodes. In this example, S = Ln and H(S) = 1L0

n − 1.5L1
n + 1L2

n − 0.25L3
n is a lowpass filter that smooths the

input signal.

III. GRAPH CONVOLUTIONAL FILTERS

The convolution is a key operation in SP as it helps to de-
fine filtering operations and to understand linear, time-invariant
systems. In ML, convolutional filters are the building block
of CNNs, and their computational efficiency and parameter-
sharing property tackle the curse of dimensionality. Convo-
lutions also leverage the symmetries in the domain (such as
translations in space) and allow for a degree of mathematical
tractability with respect to domain perturbation [50]. We present
here a now standard generalization of the convolutional filter
to the graph domain, with the goal of inheriting the above
properties. Then, in Sec. IV we analyze the filter behavior in
the graph spectral domain, akin to the Fourier analysis for
temporal filters, and in Sec. V we discuss strategies to design the
filter parameters.

A. Definition

A convolutional filter is a shift-and-sum operation of the
input signal [51]. While a shift in time implies a delay,
a graph signal shift requires taking into account the topo-
logical structure.

Graph signal shift. A graph signal shift is a linear trans-
formation S : XV → XV obtained from applying a GSO S
to a signal x, i.e. S(x) = Sx. The shifted signal at node i
is computed as

[Sx]i =
N∑

j=1

[S]ijx =
∑

j∈N in
i ∪{i}

sijxj , (2)

which is a local linear combination of the signal values at
neighboring nodes.

If the GSO is the adjacency matrix A, the shifted signal
represents a one-step propagation. Instead, if the GSO is the
graph Laplacian L, the shifted signal is a weighted difference of
the signals at neighboring nodes [Lx]i =

∑
j∈Ni

aij(xi − xj).

Graph convolutional filter. Given a set of parameters
h = [h0, . . . , hK ]#, a graph convolutional filter of order
K is a linear mapping H : XV → XV comprising a linear
combination of K shifted signals

H(x) =
K∑

k=0

hkS
kx = H(S)x (3)

where H(S) =
∑K

k=0 hkSk is the N × N polynomial fil-
tering matrix.

The output at node i is yi = h0xi + h1[Sx]i + . . . +
hK [SKx]i, which is a linear combination of signal values
located at most up to K−hops away. This is because [Sk]ji $= 0
implies that there exists at least one path of length k between
nodes i and j through which the signals can diffuse. These
signals are shifted repeatedly over the graph as per (2);
see also Fig. 2. The term convolution for (3) is rooted in the
algebraic extension of the convolution operation [20] and the
discrete-time counterpart can be seen as a particular case over
a cyclic graph; see Box 1.

B. Properties

Graph convolutional filters satisfy the following properties.
Property 1 (Linearity): For two inputs x1, x2, scalars α,β,

and filter H(S), it holds that

αH(S)x1 + βH(S)x2 = H(S)(αx1 + βx2).

Property 2 (Shift invariance): The graph convolution is in-
variant to shifts, i.e., SH(S) = H(S)S. This implies that given
two filters H1(S) and H2(S) and an input signal x, it holds that
we can switch the order of the filters:

H1(S)H2(S)x = H2(S)H1(S)x.

Property 3 (Permutation equivariance): Denote the set of
permutation matrices by

P =
{
P ∈ {0, 1}N×N : P1 = 1 PT1 = 1}.

Authorized licensed use limited to: UNIVERSITY AT ALBANY. Downloaded on August 23,2025 at 05:35:38 UTC from IEEE Xplore.  Restrictions apply. 

[Isufi et. al, IEEE TSP, 2024]



Sihag, Mateos, Ribeiro                      Disentangling neurodegeneration with brain age gap prediction: A GSP perspective

Ø Covariance matrix forms a fully-connected graph where 

• nodes are features (brain regions)

• edges are covariance values

Ø Graph filter on covariance matrix     is defined as

Graph filter on covariance matrix

26
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Covariance Neural Networks (VNNs)
Graph convolution on the covariance matrix

↭ Covariance filters:
→ Defined as z =

∑K
k=0 hkĈ

k
x = H(Ĉ)x

→ Ĉ
k
x performs a k-shift of signal x over the graph described by Ĉ
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x Ĉx Ĉ
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CoVariance filter

27

Ø Analogy between              and PCA

• Using eigendecomposition                           , it follows that
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Ĉ = V̂!̂V̂T

PCA

<latexit sha1_base64="/5PhipBgx14W+uYHLyqt6oijSgg="></latexit>

z = H(Ĉ)x =
K∑

k=0

hkĈ
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CoVariance filter

28

Ø Analogy between              and PCA

• Using eigendecomposition                           , it follows that

• coVariance filter and PCA are conceptually equivalent

     𝑖-th component is modulated by ℎ 𝜆" = ∑'(#& ℎ'𝜆"'
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CoVariance Neural Networks (VNNs)

29

Ø coVariance filters can learn only linear representations

Ø To accommodate learn non-linear representations, concatenate coVariance 

filter with pointwise non-linearity 𝜎	(for e.g., ReLU, sigmoid, etc.) 
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CoVariance Neural Networks (VNNs)

30
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Output !(x; Ĉ,H)

Ø coVariance filters can learn only linear representations

Ø To accommodate learn non-linear representations, concatenate coVariance 

filter with pointwise non-linearity 𝜎	(for e.g., ReLU, sigmoid, etc.) 

<latexit sha1_base64="XOVAqc09SQrEX7octEOVuheEo9Y=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Ae0oWy2k3bpZhN2N2IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHssHM0nQj+hQ8pAzaqzUznpBSJ6m/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/m5U3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2e9kwBUyIyaWUKa4vZWwEVWUGZtQyYbgLb+8SloXVa9Wrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwzO8wpuTOC/Ou/OxaC04+cwx/IHz+QMynI9/</latexit>x
<latexit sha1_base64="gx6jRJnxgHtiyIi2Xy0UWpHXBGs=">AAAB9HicbVBNSwMxEJ31s9avqkcvwSLUS9kVqR6LXjxWsB/QXUo2zbahyWZNsoWy9Hd48aCIV3+MN/+NabsHbX0w8Hhvhpl5YcKZNq777aytb2xubRd2irt7+weHpaPjlpapIrRJJJeqE2JNOYtp0zDDaSdRFIuQ03Y4upv57TFVmsn40UwSGgg8iFnECDZWCnzNBgJXfNKX5qJXKrtVdw60SryclCFHo1f68vuSpILGhnCsdddzExNkWBlGOJ0W/VTTBJMRHtCupTEWVAfZ/OgpOrdKH0VS2YoNmqu/JzIstJ6I0HYKbIZ62ZuJ/3nd1EQ3QcbiJDU0JotFUcqRkWiWAOozRYnhE0swUczeisgQK0yMzaloQ/CWX14lrcuqV6vWHq7K9ds8jgKcwhlUwINrqMM9NKAJBJ7gGV7hzRk7L86787FoXXPymRP4A+fzB0aFkcs=</latexit>

�(·)

<latexit sha1_base64="gx6jRJnxgHtiyIi2Xy0UWpHXBGs=">AAAB9HicbVBNSwMxEJ31s9avqkcvwSLUS9kVqR6LXjxWsB/QXUo2zbahyWZNsoWy9Hd48aCIV3+MN/+NabsHbX0w8Hhvhpl5YcKZNq777aytb2xubRd2irt7+weHpaPjlpapIrRJJJeqE2JNOYtp0zDDaSdRFIuQ03Y4upv57TFVmsn40UwSGgg8iFnECDZWCnzNBgJXfNKX5qJXKrtVdw60SryclCFHo1f68vuSpILGhnCsdddzExNkWBlGOJ0W/VTTBJMRHtCupTEWVAfZ/OgpOrdKH0VS2YoNmqu/JzIstJ6I0HYKbIZ62ZuJ/3nd1EQ3QcbiJDU0JotFUcqRkWiWAOozRYnhE0swUczeisgQK0yMzaloQ/CWX14lrcuqV6vWHq7K9ds8jgKcwhlUwINrqMM9NKAJBJ7gGV7hzRk7L86787FoXXPymRP4A+fzB0aFkcs=</latexit>

�(·)

Readout
<latexit sha1_base64="pTzhf8vT1Kn9ho3+8nxytU9gEKs=">AAACFXicbVC7SgNBFJ2Nr7i+opY2g0GwkLCbIloGbSwsIpgHZEOYndxNhszOLDOzQljyEzb+io2FIraCnX/j5FHExAMXDufcO3PvCRPOtPG8Hye3tr6xuZXfdnd29/YPCodHDS1TRaFOJZeqFRINnAmoG2Y4tBIFJA45NMPhzcRvPoLSTIoHM0qgE5O+YBGjxFipW7hwAx25biAkEz0Qxr0DogQTfbwoytRQGUO3UPRK3hR4lfhzUkRz1LqF76AnaRrbNygnWrd9LzGdjCjDKIexG6QaEkKHpA9tSwWJQXey6VVjfGaVHo6ksiUMnqqLExmJtR7Foe2MiRnoZW8i/ue1UxNddTImktSAoLOPopRjI/EkItxjCqjhI0sIVczuiumAKEKNDdK1IfjLJ6+SRrnkV0qV+3Kxej2PI49O0Ck6Rz66RFV0i2qojih6Qi/oDb07z86r8+F8zlpzznzmGP2B8/ULOEKdqQ==</latexit>

Learning
outcome

<latexit sha1_base64="TIFJz28he+e6zK40ZypfjLVrdAs=">AAAB9HicbVA9SwNBEJ2LX/H8ilraLAbBKtyliJZBGwuLCOYDkiPsbeaSJXsf7u4FwpHfYWOhiK0/xs5/4ya5QhMfDDzem2Fmnp8IrrTjfFuFjc2t7Z3irr23f3B4VDo+aak4lQybLBax7PhUoeARNjXXAjuJRBr6Atv++HbutycoFY+jRz1N0AvpMOIBZ1QbybN7KrDtezpFSdx+qexUnAXIOnFzUoYcjX7pqzeIWRpipJmgSnVdJ9FeRqXmTODM7qUKE8rGdIhdQyMaovKyxdEzcmGUAQliaSrSZKH+nshoqNQ09E1nSPVIrXpz8T+vm+rg2st4lKQaI7ZcFKSC6JjMEyADLpFpMTWEMsnNrYSNqKRMm5xsE4K7+vI6aVUrbq1Se6iW6zd5HEU4g3O4BBeuoA530IAmMHiCZ3iFN2tivVjv1seytWDlM6fwB9bnD4PGkKY=</latexit>

Layer 1

<latexit sha1_base64="ijV3uEInlky5BppRhMhTJjbgu/0=">AAAB9HicbVDJSgNBEK2JWxy3qEcvjUHwFGZyiB6DXjx4iGAWSIbQ06lJmvQsdvcEhiHf4cWDIl79GG/+jZ3loIkPCh7vVVFVz08EV9pxvq3CxubW9k5x197bPzg8Kh2ftFScSoZNFotYdnyqUPAIm5prgZ1EIg19gW1/fDvz2xOUisfRo84S9EI6jHjAGdVG8uyeCmz7nmYoSbVfKjsVZw6yTtwlKcMSjX7pqzeIWRpipJmgSnVdJ9FeTqXmTODU7qUKE8rGdIhdQyMaovLy+dFTcmGUAQliaSrSZK7+nshpqFQW+qYzpHqkVr2Z+J/XTXVw7eU8SlKNEVssClJBdExmCZABl8i0yAyhTHJzK2EjKinTJifbhOCuvrxOWtWKW6vUHqrl+s0yjiKcwTlcggtXUIc7aEATGDzBM7zCmzWxXqx362PRWrCWM6fwB9bnD4VKkKc=</latexit>

Layer 2

<latexit sha1_base64="zrmuI57je0MO07VBNWgWa1yLb04="></latexit>

H1(Ĉ) =
K∑

k=0

h1kĈ
k

<latexit sha1_base64="Jm96Eb7I8pEO1hn6PCvJHC6nzGY="></latexit>

H2(Ĉ) =
K∑

k=0

h2kĈ
k

<latexit sha1_base64="hF8qu4zs/CRQXT9yR8Yupq+/Cx0=">AAACDXicbVDLSsNAFJ3UV62vqEs3g1WoICURqYKbYjddVrAPaEKZTCfN0MkkzEzEEvIDbvwVNy4UcevenX/jNO1CqwcunDnnXube48WMSmVZX0ZhaXllda24XtrY3NreMXf3OjJKBCZtHLFI9DwkCaOctBVVjPRiQVDoMdL1xo2p370jQtKI36pJTNwQjTj1KUZKSwPzyGkFtJI6ng/vs1PoBEjlj0Z2BVMHIwab2cnALFtVKwf8S+w5KYM5WgPz0xlGOAkJV5ghKfu2FSs3RUJRzEhWchJJYoTHaET6mnIUEumm+TUZPNbKEPqR0MUVzNWfEykKpZyEnu4MkQrkojcV//P6ifIv3ZTyOFGE49lHfsKgiuA0GjikgmDFJpogLKjeFeIACYSVDrCkQ7AXT/5LOmdVu1at3ZyX69fzOIrgAByCCrDBBaiDJmiBNsDgATyBF/BqPBrPxpvxPmstGPOZffALxsc3DXWaSw==</latexit>

!(x, Ĉ;H)

Example: A two-layer VNN
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CoVariance Neural Networks (VNNs)
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Ø coVariance filters can learn only linear representations

Ø To accommodate learn non-linear representations, concatenate coVariance 

filter with pointwise non-linearity 𝜎	(for e.g., ReLU, sigmoid, etc.) 

Ø                        represents VNN output

Ø       is set of all filter taps

<latexit sha1_base64="Uz4RFL+Q8zmrCk7Usw6z5OLlwIA=">AAAB/XicbVDLSsNAFJ3UV42v+Ni5GWwFVyUpoi6LunBZwT6gCWUynbRDJw9mbsQair/ixoUibv0Pd/6N0zYLbT1w4XDOvdx7j58IrsC2v43C0vLK6lpx3dzY3NresXb3mipOJWUNGotYtn2imOARawAHwdqJZCT0BWv5w6uJ37pnUvE4uoNRwryQ9CMecEpAS13rwFUBNs1rAgSXM9cP8MO43LVKdsWeAi8SJycllKPetb7cXkzTkEVABVGq49gJeBmRwKlgY9NNFUsIHZI+62gakZApL5teP8bHWunhIJa6IsBT9fdERkKlRqGvO0MCAzXvTcT/vE4KwYWX8ShJgUV0tihIBYYYT6LAPS4ZBTHShFDJ9a2YDogkFHRgpg7BmX95kTSrFeescnpbLdUu8ziK6BAdoRPkoHNUQzeojhqIokf0jF7Rm/FkvBjvxsestWDkM/voD4zPH7cVk3k=</latexit>

Data x VNN

<latexit sha1_base64="2ypLC8dNdhM7g3+4s801DntEaWs=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqsdiLx4r2A9oStlsN+3SzSbsToQS+je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMGnO/88S1EbF6xGnC+xEdKREKRtFKfuYHIfHHFEljNihX3Kq7AFknXk4qkKM5KH/5w5ilEVfIJDWm57kJ9jOqUTDJZyU/NTyhbEJHvGepohE3/Wxx84xcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw9t+JlSSIldsuShMJcGYzAMgQ6E5Qzm1hDIt7K2EjammDG1MJRuCt/ryOmlfVb1atfZwXanf5XEU4QzO4RI8uIE63EMTWsAggWd4hTcndV6cd+dj2Vpw8plT+APn8wdHc5E1</latexit>

Ĉ

<latexit sha1_base64="mTBsXWDh21DZmEWlwkMNlD0zWhU=">AAACHHicbVDLSgMxFM34dnyNunQTbAUFKTMVquBG7KY7K9hW6Awlk2ZsaOZBckcsw3yIG3/FjQtF3LgQ/BvTaRe+DgROzrmX5Bw/EVyBbX8aM7Nz8wuLS8vmyura+oa1udVWcSopa9FYxPLaJ4oJHrEWcBDsOpGMhL5gHX9YH/udWyYVj6MrGCXMC8lNxANOCWipZx25KsCmeZFCkgIuu80B389cP8B3+Sl2BwSKSz0/xJlLicCN/KDcs0p2xS6A/xJnSkpoimbPenf7MU1DFgEVRKmuYyfgZUQCp4LlppsqlhA6JDesq2lEQqa8rAiX4z2t9HEQS30iwIX6fSMjoVKj0NeTIYGB+u2Nxf+8bgrBiZfxSAdnEZ08FKQCQ4zHTeE+l4yCGGlCqOT6r5gOiCQUdJ+mLsH5HfkvaVcrTq1Su6yWzs6ndSyhHbSL9pGDjtEZaqAmaiGK7tEjekYvxoPxZLwab5PRGWO6s41+wPj4AqeRn0E=</latexit>

Output !(x; Ĉ,H)

Example: A two-layer VNN

<latexit sha1_base64="99WczK5GYkoE3BRBPQH/IrcZglE=">AAACFHicbVDLSsNAFJ3UV42vqEs3g61QUUrSRRXcFLvpsoJ9QBPKZDppBycPZiZiCfkIN/6KGxeKuHXhzr9xmmahrQcunDnnXube40aMCmma31phZXVtfaO4qW9t7+zuGfsHXRHGHJMODlnI+y4ShNGAdCSVjPQjTpDvMtJz75ozv3dPuKBhcCunEXF8NA6oRzGSShoaZ7bwoF622xNaSWzXgw/pFbQnSGaPZnoOExsjBlvpaXlolMyqmQEuEysnJZCjPTS+7FGIY58EEjMkxMAyI+kkiEuKGUl1OxYkQvgOjclA0QD5RDhJdlQKT5Qygl7IVQUSZurviQT5Qkx9V3X6SE7EojcT//MGsfQunYQGUSxJgOcfeTGDMoSzhOCIcoIlmyqCMKdqV4gniCMsVY66CsFaPHmZdGtVq16t39RKjes8jiI4AsegAixwARqgBdqgAzB4BM/gFbxpT9qL9q59zFsLWj5zCP5A+/wB3TqcNg==</latexit>

!(x; Ĉ,H)
<latexit sha1_base64="MVOYPAe5Hk9uvGEeMygEmFH1oZQ=">AAAB8HicbVBNSwMxEJ2tX3X9qnr0EiyCp7Ir0noseumxgv2QdinZNNuGJtklyQpl6a/w4kERr/4cb/4b03YP2vpg4PHeDDPzwoQzbTzv2ylsbG5t7xR33b39g8Oj0vFJW8epIrRFYh6rbog15UzSlmGG026iKBYhp51wcjf3O09UaRbLBzNNaCDwSLKIEWys9OhmfYI5aswGpbJX8RZA68TPSRlyNAelr/4wJqmg0hCOte75XmKCDCvDCKczt59qmmAywSPas1RiQXWQLQ6eoQurDFEUK1vSoIX6eyLDQuupCG2nwGasV725+J/XS010E2RMJqmhkiwXRSlHJkbz79GQKUoMn1qCiWL2VkTGWGFibEauDcFffXmdtK8qfrVSvb8u12/zOIpwBudwCT7UoA4NaEILCAh4hld4c5Tz4rw7H8vWgpPPnMIfOJ8/43qP1Q==</latexit>

H

<latexit sha1_base64="XOVAqc09SQrEX7octEOVuheEo9Y=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Ae0oWy2k3bpZhN2N2IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHssHM0nQj+hQ8pAzaqzUznpBSJ6m/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/m5U3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2e9kwBUyIyaWUKa4vZWwEVWUGZtQyYbgLb+8SloXVa9Wrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwzO8wpuTOC/Ou/OxaC04+cwx/IHz+QMynI9/</latexit>x
<latexit sha1_base64="gx6jRJnxgHtiyIi2Xy0UWpHXBGs=">AAAB9HicbVBNSwMxEJ31s9avqkcvwSLUS9kVqR6LXjxWsB/QXUo2zbahyWZNsoWy9Hd48aCIV3+MN/+NabsHbX0w8Hhvhpl5YcKZNq777aytb2xubRd2irt7+weHpaPjlpapIrRJJJeqE2JNOYtp0zDDaSdRFIuQ03Y4upv57TFVmsn40UwSGgg8iFnECDZWCnzNBgJXfNKX5qJXKrtVdw60SryclCFHo1f68vuSpILGhnCsdddzExNkWBlGOJ0W/VTTBJMRHtCupTEWVAfZ/OgpOrdKH0VS2YoNmqu/JzIstJ6I0HYKbIZ62ZuJ/3nd1EQ3QcbiJDU0JotFUcqRkWiWAOozRYnhE0swUczeisgQK0yMzaloQ/CWX14lrcuqV6vWHq7K9ds8jgKcwhlUwINrqMM9NKAJBJ7gGV7hzRk7L86787FoXXPymRP4A+fzB0aFkcs=</latexit>

�(·)

<latexit sha1_base64="gx6jRJnxgHtiyIi2Xy0UWpHXBGs=">AAAB9HicbVBNSwMxEJ31s9avqkcvwSLUS9kVqR6LXjxWsB/QXUo2zbahyWZNsoWy9Hd48aCIV3+MN/+NabsHbX0w8Hhvhpl5YcKZNq777aytb2xubRd2irt7+weHpaPjlpapIrRJJJeqE2JNOYtp0zDDaSdRFIuQ03Y4upv57TFVmsn40UwSGgg8iFnECDZWCnzNBgJXfNKX5qJXKrtVdw60SryclCFHo1f68vuSpILGhnCsdddzExNkWBlGOJ0W/VTTBJMRHtCupTEWVAfZ/OgpOrdKH0VS2YoNmqu/JzIstJ6I0HYKbIZ62ZuJ/3nd1EQ3QcbiJDU0JotFUcqRkWiWAOozRYnhE0swUczeisgQK0yMzaloQ/CWX14lrcuqV6vWHq7K9ds8jgKcwhlUwINrqMM9NKAJBJ7gGV7hzRk7L86787FoXXPymRP4A+fzB0aFkcs=</latexit>

�(·)

Readout
<latexit sha1_base64="pTzhf8vT1Kn9ho3+8nxytU9gEKs=">AAACFXicbVC7SgNBFJ2Nr7i+opY2g0GwkLCbIloGbSwsIpgHZEOYndxNhszOLDOzQljyEzb+io2FIraCnX/j5FHExAMXDufcO3PvCRPOtPG8Hye3tr6xuZXfdnd29/YPCodHDS1TRaFOJZeqFRINnAmoG2Y4tBIFJA45NMPhzcRvPoLSTIoHM0qgE5O+YBGjxFipW7hwAx25biAkEz0Qxr0DogQTfbwoytRQGUO3UPRK3hR4lfhzUkRz1LqF76AnaRrbNygnWrd9LzGdjCjDKIexG6QaEkKHpA9tSwWJQXey6VVjfGaVHo6ksiUMnqqLExmJtR7Foe2MiRnoZW8i/ue1UxNddTImktSAoLOPopRjI/EkItxjCqjhI0sIVczuiumAKEKNDdK1IfjLJ6+SRrnkV0qV+3Kxej2PI49O0Ck6Rz66RFV0i2qojih6Qi/oDb07z86r8+F8zlpzznzmGP2B8/ULOEKdqQ==</latexit>

Learning
outcome

<latexit sha1_base64="TIFJz28he+e6zK40ZypfjLVrdAs=">AAAB9HicbVA9SwNBEJ2LX/H8ilraLAbBKtyliJZBGwuLCOYDkiPsbeaSJXsf7u4FwpHfYWOhiK0/xs5/4ya5QhMfDDzem2Fmnp8IrrTjfFuFjc2t7Z3irr23f3B4VDo+aak4lQybLBax7PhUoeARNjXXAjuJRBr6Atv++HbutycoFY+jRz1N0AvpMOIBZ1QbybN7KrDtezpFSdx+qexUnAXIOnFzUoYcjX7pqzeIWRpipJmgSnVdJ9FeRqXmTODM7qUKE8rGdIhdQyMaovKyxdEzcmGUAQliaSrSZKH+nshoqNQ09E1nSPVIrXpz8T+vm+rg2st4lKQaI7ZcFKSC6JjMEyADLpFpMTWEMsnNrYSNqKRMm5xsE4K7+vI6aVUrbq1Se6iW6zd5HEU4g3O4BBeuoA530IAmMHiCZ3iFN2tivVjv1seytWDlM6fwB9bnD4PGkKY=</latexit>

Layer 1

<latexit sha1_base64="ijV3uEInlky5BppRhMhTJjbgu/0=">AAAB9HicbVDJSgNBEK2JWxy3qEcvjUHwFGZyiB6DXjx4iGAWSIbQ06lJmvQsdvcEhiHf4cWDIl79GG/+jZ3loIkPCh7vVVFVz08EV9pxvq3CxubW9k5x197bPzg8Kh2ftFScSoZNFotYdnyqUPAIm5prgZ1EIg19gW1/fDvz2xOUisfRo84S9EI6jHjAGdVG8uyeCmz7nmYoSbVfKjsVZw6yTtwlKcMSjX7pqzeIWRpipJmgSnVdJ9FeTqXmTODU7qUKE8rGdIhdQyMaovLy+dFTcmGUAQliaSrSZK7+nshpqFQW+qYzpHqkVr2Z+J/XTXVw7eU8SlKNEVssClJBdExmCZABl8i0yAyhTHJzK2EjKinTJifbhOCuvrxOWtWKW6vUHqrl+s0yjiKcwTlcggtXUIc7aEATGDzBM7zCmzWxXqx362PRWrCWM6fwB9bnD4VKkKc=</latexit>

Layer 2

<latexit sha1_base64="zrmuI57je0MO07VBNWgWa1yLb04="></latexit>

H1(Ĉ) =
K∑

k=0

h1kĈ
k

<latexit sha1_base64="Jm96Eb7I8pEO1hn6PCvJHC6nzGY="></latexit>

H2(Ĉ) =
K∑

k=0

h2kĈ
k

<latexit sha1_base64="hF8qu4zs/CRQXT9yR8Yupq+/Cx0=">AAACDXicbVDLSsNAFJ3UV62vqEs3g1WoICURqYKbYjddVrAPaEKZTCfN0MkkzEzEEvIDbvwVNy4UcevenX/jNO1CqwcunDnnXube48WMSmVZX0ZhaXllda24XtrY3NreMXf3OjJKBCZtHLFI9DwkCaOctBVVjPRiQVDoMdL1xo2p370jQtKI36pJTNwQjTj1KUZKSwPzyGkFtJI6ng/vs1PoBEjlj0Z2BVMHIwab2cnALFtVKwf8S+w5KYM5WgPz0xlGOAkJV5ghKfu2FSs3RUJRzEhWchJJYoTHaET6mnIUEumm+TUZPNbKEPqR0MUVzNWfEykKpZyEnu4MkQrkojcV//P6ifIv3ZTyOFGE49lHfsKgiuA0GjikgmDFJpogLKjeFeIACYSVDrCkQ7AXT/5LOmdVu1at3ZyX69fzOIrgAByCCrDBBaiDJmiBNsDgATyBF/BqPBrPxpvxPmstGPOZffALxsc3DXWaSw==</latexit>

!(x, Ĉ;H)
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VNNs are well suited for neuroimaging data analysis

32

Ø Theoretical properties of VNNs make them appealing for neuroimaging data 

analysis

• Connections with PCA

• Stability           reproducible outcomes in limited data settings 
                               [Sihag et al., 2022]

• Transferability

transparent outcomes by leveraging spectrum of 
covariance matrix 

enhanced generalizability and robustness to choice 
of brain atlases [Sihag et al., 2024]
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VNN vs PCA on age prediction task

<latexit sha1_base64="Nrm/INbjutFXWkQfeWxU1JvlTt4=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3iHoMevEY0TwgWULvZDYZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TRVmDxiJW7QA1E1yyhuFGsHaiGEaBYK1gdDvzW09MaR7LRzNOmB/hQPKQUzRWeijjea9YcivuHGSVeBkpQYZ6r/jV7cc0jZg0VKDWHc9NjD9BZTgVbFroppolSEc4YB1LJUZM+5P5qVNyZpU+CWNlSxoyV39PTDDSehwFtjNCM9TL3kz8z+ukJrz2J1wmqWGSLhaFqSAmJrO/SZ8rRo0YW4JUcXsroUNUSI1Np2BD8JZfXiXNasW7rFzcV0u1myyOPJzAKZTBgyuowR3UoQEUBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AivmNUQ==</latexit>

(a)

<latexit sha1_base64="04jmFCh2+dGXSQdgpCBbohShRNo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3iHoMevEY0TwgWcLsZDYZMju7zPQKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkQKg6777eTW1jc2t/LbhZ3dvf2D4uFR08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwup35rSeujYjVI44T7kd0oEQoGEUrPZSD816x5FbcOcgq8TJSggz1XvGr249ZGnGFTFJjOp6boD+hGgWTfFropoYnlI3ogHcsVTTixp/MT52SM6v0SRhrWwrJXP09MaGRMeMosJ0RxaFZ9mbif14nxfDanwiVpMgVWywKU0kwJrO/SV9ozlCOLaFMC3srYUOqKUObTsGG4C2/vEqa1Yp3Wbm4r5ZqN1kceTiBUyiDB1dQgzuoQwMYDOAZXuHNkc6L8+58LFpzTjZzDH/gfP4AjH6NUg==</latexit>

(b)

<latexit sha1_base64="RD88VG1BkWJCL6LJSVMcSHtu1lE=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3iHoMevEY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mnGCfkQHkoecUWOlhzI77xVLbsWdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE177Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNasW7rFzcV0u1myyOPJzAKZTBgyuowR3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AjgONUw==</latexit>

(c)

<latexit sha1_base64="I9M6MGu2rfTQStdyGIK9wwS1tiM=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRahXspuEfVY9OKxov2AdinZbLYNzSZLkhXK0p/gxYMiXv1F3vw3pu0etPXBwOO9GWbmBQln2rjut1NYW9/Y3Cpul3Z29/YPyodHbS1TRWiLSC5VN8CaciZoyzDDaTdRFMcBp51gfDvzO09UaSbFo5kk1I/xULCIEWys9FANzwfliltz50CrxMtJBXI0B+WvfihJGlNhCMda9zw3MX6GlWGE02mpn2qaYDLGQ9qzVOCYaj+bnzpFZ1YJUSSVLWHQXP09keFY60kc2M4Ym5Fe9mbif14vNdG1nzGRpIYKslgUpRwZiWZ/o5ApSgyfWIKJYvZWREZYYWJsOiUbgrf88ipp12veZe3ivl5p3ORxFOEETqEKHlxBA+6gCS0gMIRneIU3hzsvzrvzsWgtOPnMMfyB8/kDj4iNVA==</latexit>

(d)

<latexit sha1_base64="QkPLdkSagwErQO6xjpiHNsiY1DA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3iHoMevEY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mnGCfkQHkoecUWOlhzKe94olt+LOQVaJl5ESZKj3il/dfszSCKVhgmrd8dzE+BOqDGcCp4VuqjGhbEQH2LFU0gi1P5mfOiVnVumTMFa2pCFz9ffEhEZaj6PAdkbUDPWyNxP/8zqpCa/9CZdJalCyxaIwFcTEZPY36XOFzIixJZQpbm8lbEgVZcamU7AheMsvr5JmteJdVi7uq6XaTRZHHk7gFMrgwRXU4A7q0AAGA3iGV3hzhPPivDsfi9ack80cwx84nz+RDY1V</latexit>

(e)

<latexit sha1_base64="Wh8GlY0UviyHm5fO3I+sHKrTPWM=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3iHoMevEY0TwgWcLsZDYZMju7zPQKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkQKg6777eTW1jc2t/LbhZ3dvf2D4uFR08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwup35rSeujYjVI44T7kd0oEQoGEUrPZTD816x5FbcOcgq8TJSggz1XvGr249ZGnGFTFJjOp6boD+hGgWTfFropoYnlI3ogHcsVTTixp/MT52SM6v0SRhrWwrJXP09MaGRMeMosJ0RxaFZ9mbif14nxfDanwiVpMgVWywKU0kwJrO/SV9ozlCOLaFMC3srYUOqKUObTsGG4C2/vEqa1Yp3Wbm4r5ZqN1kceTiBUyiDB1dQgzuoQwMYDOAZXuHNkc6L8+58LFpzTjZzDH/gfP4AkpKNVg==</latexit>

(f)

<latexit sha1_base64="gYy6aVbwTOlUEdwpVsWp5Y+yZBU=">AAAB9XicbVBNS8NAEN34WetX1aOXxSJ4KkkR9Vj04rGC/YA2ls120i7dbMLuRCmh/8OLB0W8+l+8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk41hwaPZazbATMghYIGCpTQTjSwKJDQCkY3U7/1CNqIWN3jOAE/YgMlQsEZWukh65qQIhikBnDSK5XdijsDXSZeTsokR71X+ur2Y55GoJBLZkzHcxP0M6ZRcAmTYjc1kDA+YgPoWKpYBMbPZldP6KlV+jSMtS2FdKb+nshYZMw4CmxnxHBoFr2p+J/XSTG88jOhkhRB8fmiMJUUYzqNgPaFBo5ybAnjWthbKR8yzTjaoIo2BG/x5WXSrFa8i8r5XbVcu87jKJBjckLOiEcuSY3ckjppEE40eSav5M15cl6cd+dj3rri5DNH5A+czx+B3ZKG</latexit>

test set
<latexit sha1_base64="cmxFxVKsSIu4KTEAb22WuvIkyKM=">AAAB+3icbVDLSgNBEJz1GeMrxqOXwSB4CrtB1GPQi8cI5gHJEmYnvcmQ2dllplcMy/6KFw+KePVHvPk3Th4HTSxoKKq66e4KEikMuu63s7a+sbm1Xdgp7u7tHxyWjsotE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+Pbqd9+BG1ErB5wkoAfsaESoeAMrdQvlbOeCSlqJpRQQ2oA836p4lbdGegq8RakQhZo9EtfvUHM0wgUcsmM6Xpugn7GNAouIS/2UgMJ42M2hK6likVg/Gx2e07PrDKgYaxtKaQz9fdExiJjJlFgOyOGI7PsTcX/vG6K4bWfCZWkCIrPF4WppBjTaRB0IDRwlBNLGNfC3kr5iGnG0cZVtCF4yy+vklat6l1WL+5rlfrNIo4COSGn5Jx45IrUyR1pkCbh5Ik8k1fy5uTOi/PufMxb15zFzDH5A+fzBxc9lHs=</latexit>

training set

VNN: coVariance Neural Network    

PCA-LR: PCA-regression with linear kernel     

PCA-rbf: PCA regression with rbf kernel

Ø Regression task

Ø Comparison against PCA-regression
      Data: cortical thickness dataset (𝑚 = 104) from (𝑛 = 341) human subjects 

Ø Metric: MAE (mean absolute error)

VNN
Cortical thickness

data 
Estimate of age 

<latexit sha1_base64="UY2bvqNcUXDMIGn7jATXMvpsQ44=">AAACAXicbVDLSsNAFJ34rPVVdSO4GSyCG0siUl0W68JlBfuAJoTJdNIOnUzCzI1QQtz4K25cKOLWv3Dn3zh9LLT1wIXDOfdy7z1BIrgG2/62lpZXVtfWCxvFza3tnd3S3n5Lx6mirEljEatOQDQTXLImcBCskyhGokCwdjCsj/32A1Oax/IeRgnzItKXPOSUgJH80qE7IIAzNwhxPfczeebeMAEkx36pbFfsCfAicWakjGZo+KUvtxfTNGISqCBadx07AS8jCjgVLC+6qWYJoUPSZ11DJYmY9rLJBzk+MUoPh7EyJQFP1N8TGYm0HkWB6YwIDPS8Nxb/87ophFdexmWSApN0uihMBYYYj+PAPa4YBTEyhFDFza2YDogiFExoRROCM//yImmdV5xqpXp3Ua5dz+IooCN0jE6Rgy5RDd2iBmoiih7RM3pFb9aT9WK9Wx/T1iVrNnOA/sD6/AFdbZY2</latexit>

Ĉn��

<latexit sha1_base64="W5i7lPNEBixYscvynNjqLPbDg30=">AAAB+nicbVBNS8NAEN34WetXqkcvi0XwVBKR6rHYi8cK9gPaEDbbTbt0swm7E6XE/BQvHhTx6i/x5r9x2+agrQ8GHu/NMDMvSATX4Djf1tr6xubWdmmnvLu3f3BoV446Ok4VZW0ai1j1AqKZ4JK1gYNgvUQxEgWCdYNJc+Z3H5jSPJb3ME2YF5GR5CGnBIzk25XBmADOBkGIm7mfyRz7dtWpOXPgVeIWpIoKtHz7azCMaRoxCVQQrfuuk4CXEQWcCpaXB6lmCaETMmJ9QyWJmPay+ek5PjPKEIexMiUBz9XfExmJtJ5GgemMCIz1sjcT//P6KYTXXsZlkgKTdLEoTAWGGM9ywEOuGAUxNYRQxc2tmI6JIhRMWmUTgrv88irpXNTceq1+d1lt3BRxlNAJOkXnyEVXqIFuUQu1EUWP6Bm9ojfryXqx3q2PReuaVcwcoz+wPn8AcOyTfQ==</latexit>

Ĉn

VNN outperforms PCA and is more stable 
[Sihag et al., 2022]
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VNNs provide an anatomically interpretable and explainable brain age gap

VNNCortical 
thickness 

Σ Predicted age
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VNNs provide an anatomically interpretable and explainable brain age gap

VNNCortical 
thickness 

Σ Predicted age

Unweighted readout function
(keeps track of how residuals change in target population) 
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VNNs provide an anatomically interpretable and explainable brain age gap

Brain regions with elevated 
regional residuals in neurodegeneration

<latexit sha1_base64="EmToKBJDr20PMMgBGOdxmhQu7x0=">AAAB83icbVBNS8NAEJ3Urxq/qh69BIvgqSRF1GPRS48V7Ac0oWy2m3bpZhN2J0Io/RtePCji1T/jzX/jts1BWx8MPN6bYWZemAqu0XW/rdLG5tb2TnnX3ts/ODyqHJ90dJIpyto0EYnqhUQzwSVrI0fBeqliJA4F64aT+7nffWJK80Q+Yp6yICYjySNOCRrJ93Vk201GBI7zQaXq1twFnHXiFaQKBVqDypc/TGgWM4lUEK37nptiMCUKORVsZvuZZimhEzJifUMliZkOpoubZ86FUYZOlChTEp2F+ntiSmKt8zg0nTHBsV715uJ/Xj/D6DaYcplmyCRdLooy4WDizANwhlwxiiI3hFDFza0OHRNFKJqYbBOCt/ryOunUa9517eqhXm3cFXGU4QzO4RI8uIEGNKEFbaCQwjO8wpuVWS/Wu/WxbC1Zxcwp/IH1+QMSGJER</latexit>

Healthy
<latexit sha1_base64="49CwP6sV4GEul11QNLsXodQpjbM=">AAAB/3icbVA9SwNBEN3zM55fUcHGZjEIVuEuiFoGbawkgvmA5Ah7e3PJkr3dY3dPCDGFf8XGQhFb/4ad/8ZNcoUmPhh4vDfDzLww5Uwbz/t2lpZXVtfWCxvu5tb2zm5xb7+hZaYo1KnkUrVCooEzAXXDDIdWqoAkIYdmOLie+M0HUJpJcW+GKQQJ6QkWM0qMlbrFw46OXfcWMiUj6IEAlRslr+xNgReJn5MSylHrFr86kaRZAsJQTrRu+15qghFRhlEOY7eTaUgJHZAetC0VJAEdjKb3j/GJVSIcS2VLGDxVf0+MSKL1MAltZ0JMX897E/E/r52Z+DIYMZFmBgSdLYozjo3EkzBwxBRQw4eWEKqYvRXTPlGEGhuZa0Pw519eJI1K2T8vn91VStWrPI4COkLH6BT56AJV0Q2qoTqi6BE9o1f05jw5L8678zFrXXLymQP0B87nD5CAldU=</latexit>

Neurodegeneration

Regional 
Residual

VNNCortical 
thickness 

Σ Predicted age
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VNNs provide an anatomically interpretable and explainable brain age gap

Brain regions with elevated 
regional residuals in neurodegeneration

Contributing regions to elevated 
brain age gap in neurodegeneration

<latexit sha1_base64="EmToKBJDr20PMMgBGOdxmhQu7x0=">AAAB83icbVBNS8NAEJ3Urxq/qh69BIvgqSRF1GPRS48V7Ac0oWy2m3bpZhN2J0Io/RtePCji1T/jzX/jts1BWx8MPN6bYWZemAqu0XW/rdLG5tb2TnnX3ts/ODyqHJ90dJIpyto0EYnqhUQzwSVrI0fBeqliJA4F64aT+7nffWJK80Q+Yp6yICYjySNOCRrJ93Vk201GBI7zQaXq1twFnHXiFaQKBVqDypc/TGgWM4lUEK37nptiMCUKORVsZvuZZimhEzJifUMliZkOpoubZ86FUYZOlChTEp2F+ntiSmKt8zg0nTHBsV715uJ/Xj/D6DaYcplmyCRdLooy4WDizANwhlwxiiI3hFDFza0OHRNFKJqYbBOCt/ryOunUa9517eqhXm3cFXGU4QzO4RI8uIEGNKEFbaCQwjO8wpuVWS/Wu/WxbC1Zxcwp/IH1+QMSGJER</latexit>

Healthy
<latexit sha1_base64="49CwP6sV4GEul11QNLsXodQpjbM=">AAAB/3icbVA9SwNBEN3zM55fUcHGZjEIVuEuiFoGbawkgvmA5Ah7e3PJkr3dY3dPCDGFf8XGQhFb/4ad/8ZNcoUmPhh4vDfDzLww5Uwbz/t2lpZXVtfWCxvu5tb2zm5xb7+hZaYo1KnkUrVCooEzAXXDDIdWqoAkIYdmOLie+M0HUJpJcW+GKQQJ6QkWM0qMlbrFw46OXfcWMiUj6IEAlRslr+xNgReJn5MSylHrFr86kaRZAsJQTrRu+15qghFRhlEOY7eTaUgJHZAetC0VJAEdjKb3j/GJVSIcS2VLGDxVf0+MSKL1MAltZ0JMX897E/E/r52Z+DIYMZFmBgSdLYozjo3EkzBwxBRQw4eWEKqYvRXTPlGEGhuZa0Pw519eJI1K2T8vn91VStWrPI4COkLH6BT56AJV0Q2qoTqi6BE9o1f05jw5L8678zFrXXLymQP0B87nD5CAldU=</latexit>

Neurodegeneration

Regional 
Residual

VNNCortical 
thickness 

Age-bias 
correction

Brain age gap = 
Bias-corrected VNN 

output – True age

<latexit sha1_base64="0DJSgYEdj/cCI6pEigbFsYfzIpo=">AAACFHicbVBNS8MwGE79nPGr6tFLcAiCMNoh6nHMi8cJ7gPWMtI07cLStCSpMMp+hBf/ihcPinj14M1/Y7b1oJsPJDw8z/vmzfsEGWdKO863tbK6tr6xWdmC2zu7e/v2wWFHpbkktE1SnspegBXlTNC2ZprTXiYpTgJOu8HoZup3H6hULBX3epxRP8GxYBEjWBtpYJ97KoLQEykTIRUaesTcVDIRw6bETCAcU+R5EMY4G9hVp+bMgJaJW5IqKNEa2F9emJI8MU8SjpXqu06m/QJLzQinE+jlimaYjMyMvqECJ1T5xWypCTo1SoiiVJojNJqpvzsKnCg1TgJTmWA9VIveVPzP6+c6uvYLJrJcU0Hmg6KcI52iaUIoZJISzceGYCKZ+SsiQywxMbkoaEJwF1deJp16zb2sXdzVq41mGUcFHIMTcAZccAUa4Ba0QBsQ8AiewSt4s56sF+vd+piXrlhlzxH4A+vzBw/BnPA=</latexit>

Brain age
gap

<latexit sha1_base64="49CwP6sV4GEul11QNLsXodQpjbM=">AAAB/3icbVA9SwNBEN3zM55fUcHGZjEIVuEuiFoGbawkgvmA5Ah7e3PJkr3dY3dPCDGFf8XGQhFb/4ad/8ZNcoUmPhh4vDfDzLww5Uwbz/t2lpZXVtfWCxvu5tb2zm5xb7+hZaYo1KnkUrVCooEzAXXDDIdWqoAkIYdmOLie+M0HUJpJcW+GKQQJ6QkWM0qMlbrFw46OXfcWMiUj6IEAlRslr+xNgReJn5MSylHrFr86kaRZAsJQTrRu+15qghFRhlEOY7eTaUgJHZAetC0VJAEdjKb3j/GJVSIcS2VLGDxVf0+MSKL1MAltZ0JMX897E/E/r52Z+DIYMZFmBgSdLYozjo3EkzBwxBRQw4eWEKqYvRXTPlGEGhuZa0Pw519eJI1K2T8vn91VStWrPI4COkLH6BT56AJV0Q2qoTqi6BE9o1f05jw5L8678zFrXXLymQP0B87nD5CAldU=</latexit>

Neurodegeneration

Σ

<latexit sha1_base64="8y+h4Vh1l7Ra5j+fghYLPlimTHw=">AAAB73icbVBNS8NAEJ3Urxq/qh69LBbBU0l6qB6LvfRYwX5AG8pmu2mXbjZxdyOU0D/hxYMiXv073vw3btIctPXBwOO9GWbm+TFnSjvOt1Xa2t7Z3Svv2weHR8cnldOznooSSWiXRDySAx8rypmgXc00p4NYUhz6nPb9eSvz+09UKhaJB72IqRfiqWABI1gbaTBSAWq3bHtcqTo1JwfaJG5BqlCgM658jSYRSUIqNOFYqaHrxNpLsdSMcLq0R4miMSZzPKVDQwUOqfLS/N4lujLKBAWRNCU0ytXfEykOlVqEvukMsZ6pdS8T//OGiQ5uvZSJONFUkNWiIOFIRyh7Hk2YpETzhSGYSGZuRWSGJSbaRJSF4K6/vEl69ZrbqDXu69XmXRFHGS7gEq7BhRtoQhs60AUCHJ7hFd6sR+vFerc+Vq0lq5g5hz+wPn8ANNmOxw==</latexit>

HC
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Experiments

Ø Participants from OASIS-3 dataset [*], 148 cortical thickness features per individual           
                                                                                                                             (Distrieux brain atlas) 

[*] Pamela J LaMontagne, et al. OASIS-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer disease. MedRxiv, 2019

HC AD
Number 611 194

Age 68.38 (7.62) 74.72 (7.02)

Sex (m/f) 260/351 100/94
CDR sum of boxes 0 3.45 (1.74)

CDR: Clinical dementia rating

38

Ø Brain age gap is elevated in AD group and correlated with CDR sum of boxesRobustness of regional 
residuals being elevated in AD+ 
with respect to HC (evaluated 

across 100 VNN models)

Association between 
regional residuals (AD+) and 

CDR Sum of Boxes

a b c

Mean Pearson’s correlation 
across 100 VNN models

d
<latexit sha1_base64="78GLJVEHmT6KPLKh0hnfAnVatXI="></latexit>

⇢ = 0.474 (p-value = 2.88⇥ 10�12)

OASIS-3 
(DKT Atlas)

OASIS-3 
(DKT Atlas)

50 0.2

Robustness of regional 
residuals being elevated in AD+ 
with respect to HC (evaluated 

across 100 VNN models)

Association between 
regional residuals (AD+) and 

CDR Sum of Boxes

a b c

Mean Pearson’s correlation 
across 100 VNN models

d
<latexit sha1_base64="78GLJVEHmT6KPLKh0hnfAnVatXI="></latexit>

⇢ = 0.474 (p-value = 2.88⇥ 10�12)

OASIS-3 
(DKT Atlas)

OASIS-3 
(DKT Atlas)

50 0.2Anatomical interpretability

HC group: cognitively normal
AD group: AD diagnosis
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Ø VNN distinctly exploits eigenvectors in AD and HC groups

              explains anatomical interpretability of brain age gap in AD

39

Experiments

39

NIFD, and PPMI datasets, and the associated results for APD
and FTD disease groups are illustrated in Fig. 3b and Fig. 3c,
respectively. The HC group for 4RTNI and NIFD datasets
was the same and had !-Age = 0 ± 2.33 years. The !-Age
for FTD disease group was 6.17± 4.55 years and that for the
APD group was 2.49±3.09 years, suggesting that FTD group
exhibited more significant accelerated aging. The !-Age in
FTD group was characterized by superior frontal region in
the left hemisphere, bilateral entorhinal, parahippocampal,
and superior temporal regions, and relatively less prominent
contributions from bilateral precentral regions, which are part
of the motor cortex. FTD is characterized by neurodegener-
ation in the regions in frontal and temporal lobes [27], and
hence, the anatomic characterization in Fig. 3c captures their
impact in the form of elevated !-Age. The !-Age in APD
group was characterized by brain regions comprising bilat-
eral superior temporal, precentral, and occipital lobes. The
CBS and PSP pathologies in APD group exhibit symptoms
similar to PD in terms of motor dysfunction, but are also char-
acterized by cognitive dysfunction and typically rapid decline
in function relative to PD [28]. Hence, the implication of
regions in the motor cortex and occipital lobe in Fig. 3b is
relevant to the disease characteristic in APD. Interestingly,
unlike the other disease groups, no significant difference in
!-Age was observed in the PD group relative to its respective
HC group (Fig. 4).

Explainability of !-Age. Next, we analyzed the inner prod-
ucts between the regional residuals derived from the represen-
tations learned by VNNs and the eigenvectors of the anatomi-
cal covariance matrix. The eigenvectors of the anatomical co-
variance matrix were organized from 0 to 67, with the eigen-
vector 0 associated with the largest eigenvalue and the 67-
th eigenvector associated with the smallest eigenvalue. The
inner product metrics were significantly different (ANOVA,
p-value < 0.0001) between the AD group and HC groups
for the eigenvectors 0, 1, 2, and 6 of the anatomical covari-
ance matrix (Fig. 5a). Thus, the VNN model processed the
cortical thickness features for AD group significantly differ-
ent relative to the HC group leading to distinct distributions
in !-Age in Fig. 3a, and these differences were dictated by
variations in how the VNN exploited the eigenvectors of the
anatomical covariance matrix for AD and HC groups.

Similar results were obtained for the FTD cohort, where
the most significant group differences in the inner prod-
uct measures were observed for eigenvectors 0, 1, 4, and 5
(Fig. 5b). Thus, the variations in how the VNN exploited the
eigenvectors of the anatomical covariance matrix for FTD
and HC groups explained the variations in !-Age in Fig. 3c.
Notably, the inner product measures were significantly differ-
ent between the APD and HC groups only for eigenvector 8,
which explains the relatively smaller elevation in !-Age in
the APD group relative to FTD or AD groups in Fig. 3.

Fig. 4. !-Age for PD and respective HC group.

Fig. 5. Explaining !-Age in disease groups ((a) AD and (b)
FTD) in terms of the group differences between inner prod-
ucts of VNN representations and eigenvectors of anatomical
covariance matrices. (→→→→ : p-value → 1 exp↑4)

5. DISCUSSION

The results in Fig. 3 illustrate that the distributions of !-Age
estimates can be substantially overlapping across different
diseases. Hence, !-Age, by itself, is not a sufficient indi-
cator to characterize a disease. In this context, the anatomic
characterization of !-Age offered by VNN embellishes its
informative aspect about neurodegeneration. Notably, the
anatomic characterizations of !-Age for AD, FTD, and ATP
disease groups were unique and characteristic of the respec-
tive diseases.
Comparison with existing literature. Existing studies in
this domain are focused primarily on brain age prediction,
which is to be contrasted with this paper’s focus on !-Age
prediction. Moreover, existing studies utilize the state-of-
the-art post-hoc, model-agnostic methods, such as, SHAP,
LIME [29], saliency maps [30], and layer-wise relevance
propagation [31] to explain the brain age predictions. These
methods add anatomical interpretability to brain age esti-
mates by assigning some importance to the input features
(often associated with specific anatomic regions). Unlike
these approaches, we leverage the inherent explainability
of the VNN model and our results bring into focus the the
properties that a VNN gains when it is exposed to the infor-
mation provided by chronological age of healthy controls and
whether and how these properties translate to a meaningful
!-Age estimate.
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Experiments
• Whole brain cortical thickness dataset for Frontotemporal Dementia (FTD)

• Healthy controls (HC, n =114,  age = 64.51 ± 6.51 years, 65 females) 
• FTD diagnosis (FTD, n =119,  age = 64.72 ± 6.78 years, 47 females) 

• 68 cortical thickness features (Desikan-Killiany atlas)

Anatomic interpretabilityBrain age gap distributions Explaining anatomic interpretability
 set. The training set was further split into a subset of 498

individuals and a validation set of 70 individuals. The VNN
was trained to predict chronological age on the subset of 498
individuals with mean squared error loss optimized using
stochastic gradient descent with Adam optimizer for up to
100 epochs. The configuration with the best performance on
the validation set of 70 individuals was selected.

The first layer of VNN consisted of 2 filter taps and the
second layer consisted of 6 filter taps, with width 61. Thus,
in total, VNN model consisted of 22, 570 learnable parame-
ters. The batch size used for training was 10 and the learning
rate was 0.15. The hyperparameters for the VNN architecture
and training were decided during a hyperoptimization proce-
dure based on Optuna [24]. Using this strategy, we trained 10
distinct VNN models with different permutations of the train-
ing set. These models achieved a prediction performance of
7.25 ± 0.51 years on the test set and 6.33 years on the com-
plete dataset, with a Pearson’s correlation of 0.44 ± 0.014.
Thus, the statistical evidence suggested that VNNs learned in-
formation about healthy aging, even though they were weak
predictors of chronological age. The results reported in this
paper are derived from one pre-trained VNN model among
the 10 that were pre-trained using the above procedure.
Anatomically interpretable and explainable !-Age pre-
diction. The pre-trained VNN model facilitated the predic-
tion of !-Age and associated anatomic interpretability and
explainability for the cohorts associated with neurodegenera-
tive conditions in Section 3.1. Figure 2 provides an overview
of VNN-based pipeline for !-Age prediction.

• Evaluating !-Age. !-Age is evaluated as the difference
between brain age and chronological age. Brain age was
evaluated from the chronological age estimates formed by
the VNN with application of a standard linear regression-
based approach [25]; the weights of linear regression
model learned from the HC populations in the respective
datasets in Section 3.1.

• Assigning anatomical interpretability to !-Age. Elevated
!-Age in disease groups could be attributed to the sta-
tistical patterns in the representations formed by the pre-
trained VNN in its final layer. Since the convolution op-
erations in VNN preserve the original dimensionality of
the input data, the representations at the final layer could
be mapped to individual brain regions. Hence, we evalu-
ated a set of regional residuals ri for each brain region i,
which were defined as the difference between the chrono-
logical estimate and the output in the final layer of the
VNN corresponding to that brain region. The elevations
in the regional residuals directly contribute to elevated !-
Age [10, Section 3.3].

• Explainability of !-Age. The representations are learned
by the VNN, in part, by transforming the input data ac-
cording to the eigenspectrum of the anatomical covariance
matrix [11]. By leveraging this fact, we characterize the
explainability of !-Age by evaluating the inner products

Fig. 3. Brain age estimates and associated anatomic charac-
terizations for (a) AD, (b) APD, and (c) FTD.

between the regional residuals derived from representa-
tions learned by the VNN and the eigenvectors of the
anatomical covariance matrix. We anticipate to observe
significant differences in terms of these inner product
metrics for disease groups and healthy populations. These
experiments will elucidate how VNN processed the corti-
cal thickness information from disease groups differently
relative to the healthy population, thus lending explain-
ability to the evaluation of the downstream statistic of
!-Age in different cohorts.

4. RESULTS

For each disease dataset, we used the anatomical covariance
matrix estimated only from the respective HC group in the
pre-trained VNN model. VNN was oblivious to the identity
or any information about the disease. Figure 3 illustrates that
elevated !-Age was observed for AD, ATP, and FTD relative
to their respective HC groups. The !-Age for AD group was
4.67±4.04 years, which was elevated relative to the HC group
in this dataset (!-Age for HC: 0 ± 2.91 years). Figure 3a
also illustrates the anatomic characterization of elevated !-
Age in AD group. The anatomic characterization was derived
by plotting the F -values for ANOVA between individual ele-
ments of the representations generated by the VNN model for
AD and HC groups on the brain surface (only for group differ-
ences that had AD > HC and survived Bonferroni correction
for multiple comparisons with p-value < 0.05). The direc-
tionality AD > HC is relevant to !-Age as the rise in the in-
dividual elements of the representations learned by VNN for
a disease group contributed to the elevated !-Age estimate
relative to healthy population [10]. The anatomic characteri-
zation for !-Age in AD spanned bilateral regions in the me-
dial temporal lobe, entorhinal, and temporo-parietal junction,
which are relevant regions for AD pathology [26]. Consis-
tent results were observed in the prior work on VNN-based
!-Age prediction [10].

Similar analysis procedures were followed for 4RTNI,
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Thus, the statistical evidence suggested that VNNs learned in-
formation about healthy aging, even though they were weak
predictors of chronological age. The results reported in this
paper are derived from one pre-trained VNN model among
the 10 that were pre-trained using the above procedure.
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explainability for the cohorts associated with neurodegenera-
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of VNN-based pipeline for !-Age prediction.

• Evaluating !-Age. !-Age is evaluated as the difference
between brain age and chronological age. Brain age was
evaluated from the chronological age estimates formed by
the VNN with application of a standard linear regression-
based approach [25]; the weights of linear regression
model learned from the HC populations in the respective
datasets in Section 3.1.

• Assigning anatomical interpretability to !-Age. Elevated
!-Age in disease groups could be attributed to the sta-
tistical patterns in the representations formed by the pre-
trained VNN in its final layer. Since the convolution op-
erations in VNN preserve the original dimensionality of
the input data, the representations at the final layer could
be mapped to individual brain regions. Hence, we evalu-
ated a set of regional residuals ri for each brain region i,
which were defined as the difference between the chrono-
logical estimate and the output in the final layer of the
VNN corresponding to that brain region. The elevations
in the regional residuals directly contribute to elevated !-
Age [10, Section 3.3].

• Explainability of !-Age. The representations are learned
by the VNN, in part, by transforming the input data ac-
cording to the eigenspectrum of the anatomical covariance
matrix [11]. By leveraging this fact, we characterize the
explainability of !-Age by evaluating the inner products
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terizations for (a) AD, (b) APD, and (c) FTD.

between the regional residuals derived from representa-
tions learned by the VNN and the eigenvectors of the
anatomical covariance matrix. We anticipate to observe
significant differences in terms of these inner product
metrics for disease groups and healthy populations. These
experiments will elucidate how VNN processed the corti-
cal thickness information from disease groups differently
relative to the healthy population, thus lending explain-
ability to the evaluation of the downstream statistic of
!-Age in different cohorts.

4. RESULTS

For each disease dataset, we used the anatomical covariance
matrix estimated only from the respective HC group in the
pre-trained VNN model. VNN was oblivious to the identity
or any information about the disease. Figure 3 illustrates that
elevated !-Age was observed for AD, ATP, and FTD relative
to their respective HC groups. The !-Age for AD group was
4.67±4.04 years, which was elevated relative to the HC group
in this dataset (!-Age for HC: 0 ± 2.91 years). Figure 3a
also illustrates the anatomic characterization of elevated !-
Age in AD group. The anatomic characterization was derived
by plotting the F -values for ANOVA between individual ele-
ments of the representations generated by the VNN model for
AD and HC groups on the brain surface (only for group differ-
ences that had AD > HC and survived Bonferroni correction
for multiple comparisons with p-value < 0.05). The direc-
tionality AD > HC is relevant to !-Age as the rise in the in-
dividual elements of the representations learned by VNN for
a disease group contributed to the elevated !-Age estimate
relative to healthy population [10]. The anatomic characteri-
zation for !-Age in AD spanned bilateral regions in the me-
dial temporal lobe, entorhinal, and temporo-parietal junction,
which are relevant regions for AD pathology [26]. Consis-
tent results were observed in the prior work on VNN-based
!-Age prediction [10].

Similar analysis procedures were followed for 4RTNI,

NIFD, and PPMI datasets, and the associated results for APD
and FTD disease groups are illustrated in Fig. 3b and Fig. 3c,
respectively. The HC group for 4RTNI and NIFD datasets
was the same and had !-Age = 0 ± 2.33 years. The !-Age
for FTD disease group was 6.17± 4.55 years and that for the
APD group was 2.49±3.09 years, suggesting that FTD group
exhibited more significant accelerated aging. The !-Age in
FTD group was characterized by superior frontal region in
the left hemisphere, bilateral entorhinal, parahippocampal,
and superior temporal regions, and relatively less prominent
contributions from bilateral precentral regions, which are part
of the motor cortex. FTD is characterized by neurodegener-
ation in the regions in frontal and temporal lobes [27], and
hence, the anatomic characterization in Fig. 3c captures their
impact in the form of elevated !-Age. The !-Age in APD
group was characterized by brain regions comprising bilat-
eral superior temporal, precentral, and occipital lobes. The
CBS and PSP pathologies in APD group exhibit symptoms
similar to PD in terms of motor dysfunction, but are also char-
acterized by cognitive dysfunction and typically rapid decline
in function relative to PD [28]. Hence, the implication of
regions in the motor cortex and occipital lobe in Fig. 3b is
relevant to the disease characteristic in APD. Interestingly,
unlike the other disease groups, no significant difference in
!-Age was observed in the PD group relative to its respective
HC group (Fig. 4).

Explainability of !-Age. Next, we analyzed the inner prod-
ucts between the regional residuals derived from the represen-
tations learned by VNNs and the eigenvectors of the anatomi-
cal covariance matrix. The eigenvectors of the anatomical co-
variance matrix were organized from 0 to 67, with the eigen-
vector 0 associated with the largest eigenvalue and the 67-
th eigenvector associated with the smallest eigenvalue. The
inner product metrics were significantly different (ANOVA,
p-value < 0.0001) between the AD group and HC groups
for the eigenvectors 0, 1, 2, and 6 of the anatomical covari-
ance matrix (Fig. 5a). Thus, the VNN model processed the
cortical thickness features for AD group significantly differ-
ent relative to the HC group leading to distinct distributions
in !-Age in Fig. 3a, and these differences were dictated by
variations in how the VNN exploited the eigenvectors of the
anatomical covariance matrix for AD and HC groups.

Similar results were obtained for the FTD cohort, where
the most significant group differences in the inner prod-
uct measures were observed for eigenvectors 0, 1, 4, and 5
(Fig. 5b). Thus, the variations in how the VNN exploited the
eigenvectors of the anatomical covariance matrix for FTD
and HC groups explained the variations in !-Age in Fig. 3c.
Notably, the inner product measures were significantly differ-
ent between the APD and HC groups only for eigenvector 8,
which explains the relatively smaller elevation in !-Age in
the APD group relative to FTD or AD groups in Fig. 3.

Fig. 4. !-Age for PD and respective HC group.

Fig. 5. Explaining !-Age in disease groups ((a) AD and (b)
FTD) in terms of the group differences between inner prod-
ucts of VNN representations and eigenvectors of anatomical
covariance matrices. (→→→→ : p-value → 1 exp↑4)

5. DISCUSSION

The results in Fig. 3 illustrate that the distributions of !-Age
estimates can be substantially overlapping across different
diseases. Hence, !-Age, by itself, is not a sufficient indi-
cator to characterize a disease. In this context, the anatomic
characterization of !-Age offered by VNN embellishes its
informative aspect about neurodegeneration. Notably, the
anatomic characterizations of !-Age for AD, FTD, and ATP
disease groups were unique and characteristic of the respec-
tive diseases.
Comparison with existing literature. Existing studies in
this domain are focused primarily on brain age prediction,
which is to be contrasted with this paper’s focus on !-Age
prediction. Moreover, existing studies utilize the state-of-
the-art post-hoc, model-agnostic methods, such as, SHAP,
LIME [29], saliency maps [30], and layer-wise relevance
propagation [31] to explain the brain age predictions. These
methods add anatomical interpretability to brain age esti-
mates by assigning some importance to the input features
(often associated with specific anatomic regions). Unlike
these approaches, we leverage the inherent explainability
of the VNN model and our results bring into focus the the
properties that a VNN gains when it is exposed to the infor-
mation provided by chronological age of healthy controls and
whether and how these properties translate to a meaningful
!-Age estimate.
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Brain age gap prediction on multi-scale datasets

Ø  Datasets capture information about same phenomenon at different scales
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Recap: Transferability of VNNs cross-validates brain age gap in multi-resolution setting

Objective: Brain age gap prediction in HC (healthy) and AD+ (Alzheimer’s) cohorts from  
                    VNNs trained on 100-feature dataset

• ROIs contributing to elevated 
brain age gap in AD+ across 
different resolutions

300 parcels 500 parcels100 parcels

• Brain age gap is elevated in 
AD+ w.r.t HC cohort in 100-
feature dataset

• Results on brain age gap 
retained after transferring 
VNN to 300 and 500-feature 
datasets

FTDC300 FTDC500FTDC100*
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Conclusions
Ø Brain age gap prediction models show wide generalizability 

Ø VNNs provide a principled perspective to brain age gap

• anatomically interpretable and explainable

Ø VNN-derived brain age is a biomarker for tracking neurodegeneration and 

     disease monitoring

Ø Transferability of VNNs help cross-validate interpretability
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